Higgs Physics at the LHC

Bruce Mellado University of Wisconsin-Madison

HEP Seminar, UC San Diego, 02/07/06

Outline

Introduction >Quest for the Higgs Boson The Large Hadron Collider (LHC) The ATLAS and CMS detectors The Higgs Analysis (ATLAS) >Low Mass (H $\rightarrow\gamma\gamma$, ττ) \succ Heavier Higgs (H \rightarrow WW^(*),ZZ^(*)) -Outlook and Conclusions

Standard Model of Particle Physics

Force	Carrier
Strong	Gluons (g)
Electro-Weak	Electro-weak bosons (γ,W,Z)
Gravitation	?

Quarks and Leptons interact via the exchange of force carriers

A Higgs boson is predicted and required to give mass to particles

The Higgs boson has yet to be found!

Higgs Discovery at LHC

The Large Hadron Collider, a p-p collider

Particle production rate

Cross-section

 $v = L \cdot \sigma(E), \ \sigma \uparrow if \ E \uparrow$

Center of
Design Luminosity14 TeV1034 cm^2 s^-1Crossing rate25 ns (40 MHz)

The LHC will produce heavy particles at rates orders of magnitude greater than in predecessor accelerators

Official schedule:

- - About 100 pb⁻¹ by end 2007 Almost enough data to calibrate detector
 - > 0(1) fb⁻¹ by end of 2008 \leftarrow Limits on SM Higgs, SUSY discovery
- > 0(10) fb⁻¹ by end of 2009 \longrightarrow Higgs discovery

Need to reach installation rate of 25 dipoles/week

The ATLAS Detector

D712/mb-26/06/97

ATLAS versus CMS ?

ATLAS & CMS have very similar performance with some differences ...

4ATLAS 2 X bigger due to complex muon system +ATLAS μ resolution better in forward region (toroidal B-field) **L**CMS has better ECAL and inside solenoid \Rightarrow H $\rightarrow\gamma\gamma$ width factor of two better **ATLAS** jet energy resolution 40% better (ECAL+HCAL combination better). **CMS B-field only 4 Tesla (2T in ATLAS)** \Rightarrow Pt resolution doubles in ATLAS **ATLAS** Transition Radiation Tracker \Rightarrow Additional electron-pion separation CMS can do topological cuts at Level 1 trigger

Very similar sensitivity to Higgs

How are we going to search for the Higgs Boson?

Higgs Production Cross-sections

SM Higgs + ≥2jets at the LHC ↓ D.Zeppenfeld, D.Rainwater, et al. proposed to search for a Low Mass Higgs in association with two jets with jet veto > Central jet veto initially suggested in V.Barger, K.Cheung and T.Han in PRD 42 3052 (1990)

SM Higgs + 1 jet at the LHC . Large invariant mass of leading jet and Higgs candidate S. Abdullin et al PL B431 (1998) for $H \rightarrow \gamma \gamma$ B.Mellado, W.Quayle and Sau Lan Wu **2.** Large P_{T} of Higgs candidate Phys.Lett.B611:60-65,2005 for $H \rightarrow \tau\tau$ and 3. Leading jet is more forward than in QCD background $H \rightarrow WW(*)$ **Higgs Decay Products** Tag jet W/ZW/Z \mathbf{M}_{HJ} Not Tagged Φ Tag jet 00000000 Loose Central Jet Veto Quasi-central . 0000000

("top killer") Tagging Jet $\eta = -\ln(\tan(\theta/2))$

Main Decay Modes

Combination of strongest channels in terms of luminosity required for 5σ observation (ATLAS)

Enhancement of sensitivity w.r.t. ATLAS physics TDR (1999). Need about 4 times less luminosity for discovery in the low mass region

Based on full MC simulation studies. Made possible due to huge computing effort (10M events, 10–15 cpu minutes/event): collaboration with UW Computer Science Department

Strong enhancement of sensitivity w.r.t. ATLAS physics TDR (1999) due to a number of factors

- 1. Inclusion of H+1jet and H+2jet analyses in $H \rightarrow \gamma\gamma, \tau\tau, WW^{(*)}$ searches
- 2. Strong improvement in the $H \rightarrow WW^{(*)}$ analysis
- 3. Better understanding of electron-pion and photon-pion separation
- 4. Introduction of Object-Based method in Missing $E_{\rm T}$ reconstruction \rightarrow expect strong improvement in Missing $E_{\rm T}$ resolution for Higgs physics
- 5. More realistic implementation of QCD Higher Order corrections in MC's

These improvements are equally applicable to CMS

Low Mass Higgs: $H \rightarrow \gamma \gamma$

Outstanding issues

Photon resolution

Photon-jet separation

Splitting of phase space according to jet multiplicity

Photon-Jet Separation

↓Need to achieve >10³ (P_T>25 GeV) rejection against light jets
>Make use of pp→Z→ee(γ) and multi-jet events to optimize γ identification and isolation. Optimization is very important

Increase of signal to background ratic

SM Higgs $\rightarrow \gamma \gamma$ (+ 0,1,2 Jets)

Narrow peak on top of smooth background. Use side bands to extract background under signal peak

> Separation of events according to jet multiplicity maximizes sensitivity

Combined H+0,1,2jet analyses gives very strong enhancement of the sensitivity with respect to inclusive search

Low Mass Higgs: H->tt

Outstanding issues

Missing E_{T} reconstruction

Lepton Identification

Splitting of phase space according to jet multiplicity

Collinear Approximation

In order to reconstruct the Higgs mass need to use the collinear approximation
Tau decay products are collinear to tau direction

 \mathbf{A}_{τ_1} and \mathbf{x}_{τ_2} can be calculated if the missing \mathbf{E}_{T} is known \mathbf{A}_{G} Good missing \mathbf{E}_{T} reconstruction is essential

Object-Based Missing E_T

Successfully demonstrated in ATLAS and implemented in the software the Object-based method in Missing E_T reconstruction

▲Due to the Object-Based method in Missing E_T reconstruction we were able to improve the Higgs mass resolution w.r.t. to Physics ATLAS TDR (1999)

Low Mass $H(\rightarrow \tau\tau)+1, 2jets$

Slicing of phase space enhances sensitivity
Main background: Z+jets and tt

 \succ Use Z→ee,µµ and b-tagged tt as control samples

H(→ττ→II) +≥2jets

Н

 $\nu\nu$

Intermediate and Heavy Higgs: $(M_{H}>140 \text{ GeV}) H \rightarrow ZZ^{(*)} \rightarrow 4I$

Outstanding issues

Lepton Identification and Isolation

Suppression of backgrounds coming from tt and Zbb

Suppress reducible backgrounds using combined information from calorimeter and tracking Left out with irreducible background (non-resonant pp \rightarrow ZZ^(*)) $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$ A R = 0.2

 $\Delta R=0.2$ charged track Lepton : e or μ

charged track

$H \rightarrow ZZ^{(*)} \rightarrow 4I$ event rates using for 30 fb⁻¹ using NLO rates for signal and backgrounds.

Intermediate mass Higgs: (140<M_H<200 GeV) $H \rightarrow WW^{(*)} \rightarrow 2I2V$

Missing Energy

Missing Energy

Outstanding issues

Extraction of tt and WW backgrounds

Splitting of phase space according to jet multiplicity

Lepton Identification and Isolation, Missing E_{T}

SM Higgs $H \rightarrow WW^{(*)} \rightarrow 2I2_V$

Strong potential due to large signal yield, but no narrow resonance. Left with broad transverse mass spectrum

> Combined H+0,1,2jet analysis strongly improves sensitivity

Control Samples for $H \rightarrow WW^{(*)}$

SM $H \rightarrow WW + 0, 1, 2$ jets

Defined three independent analysis, depending on the number of tagged jets
Systematic errors added in

significance calculation

Outlook and Conclusions

The Standard Model (SM) a successfully describes the world of particle physics

>However, the particle responsible to giving mass to particles has not been discovered yet!

The LHC will be the energy frontier accelerator: expert first proton-proton collisions in summer 2007

>The LHC will produce heavy particles (such as the Higgs boson) at rates orders of magnitude greater than in predecessor accelerators

>The LHC era may be a revolution in particle physics!

ATLAS and CMS are multi-purpose detectors with great and similar capabilities. If the SM Higgs exists it will be observed with less than 10 fb⁻¹ of understood data Additional Slides

Building Blocks of Matter in the Standard Model

Quarks and leptons are organized in families or generations of matter

- So far we observe three generations (I, II, II)
 - Second and third generations are copies of the first, only much heavier
- ≻All have intrinsic angular momentum (spin) of ½ (fermions)

All particles have anti-particles

- > Display same mass and spin
- > Opposite electric charge

Forces in Nature

We believe Nature displays three levels of interactions

New particles are being discovered as predicted in the Standard Model

Year	Particle	Lab	
1974	c quark	BNL & SLAC	
1975	τ lepton	SLAC	
1977	b quark	FermiLab	די
1979	gluon	DESY	
1983	W,Z	CERN	
1994	t quark	FermiLab	jiers

The Standard Model is very successful BUT:

The Higgs boson has yet to be found! We need to explain the masses!

ATLAS has excellent calorimeters

Excellent resolution and linearity for electrons, photons, hadrons
 Powerful particle identification and isolation

Particle Detection

In order to observe the Higgs boson or any other new particle we need to detect their decay products

The ATLAS Trigger System

Trigger is crucial: reduce 1 GHz interaction rate (~2 Pb/sec) to ~200 Hz (~400 Mb/sec) which can be handled by today's computing technology

Low Mass Higgs Associated with Jets

A lot of progress since ATLAS Physics Technical Design Report (TDR 1999), mostly from the addition of H+jets channels

Slicing phase space in regions with different S/B is more optimal when inclusive analysis has little S/B

Tag jet

q.

Complex final state: $ttH(\rightarrow bb)\rightarrow lepton+v+bbbb+jj$

Analysis very sensitive to b-tagging efficiency (ε_b⁴)
 ➢ Parton/Hadron level studies → ε_b ≥60% needed
 ▲ Need ~100 times rejection against light jets and ~10 times against charm to suppress ttjj

A May achieve $3-5\sigma$ effect for $M_H = 120$ GeV and 30 fb⁻¹

Need to address issues related to background shapes and differences in hadronic scales for light and b-jets

From my talk at Higgs session of TEV4LHC 17/09/04

Two independent ways of extracting Z \rightarrow \tau\tau shape

Shape of $M_{\tau\tau}$ in $Z \rightarrow \tau\tau$ (Method I)

All cuts are kept the same except for the invariant mass of the Higgs candidate and the tagging jet

- >Assume electrons, muons, jets and missing E_T have been calibrated with Z \rightarrow ee,µµ
- ➢ Jet activity in MC is validated with Z→ee,µµ
 ☆Go from Box 1 to Box 3

 \succ Use MC to obtain $M\tau\tau$ shape in signal-like region

Shape of $M_{\tau\tau}$ in $Z \rightarrow \tau\tau$ (Method II)

- ↓Use data with Z→ee,µµ and apply same cuts on jets as in the signallike region.
- Remove the two electrons/muons (both calorimeter and tracking) and replace them with τ's, which have the same momenta
 - Needs to be tested with full simulation at ATLAS

Normalization of $Z \rightarrow \tau \tau$ using $Z \rightarrow ee, \mu \mu$

 $\blacksquare Z \rightarrow ee, \mu\mu$ offers about 35 times more statistics w.r.t to $Z \rightarrow \tau\tau \rightarrow II$

 \succ Ratio of efficiencies depends weakly with $M_{\rm HJ}$ and can be easily determined with MC after validation with data

Control Samples for $H \rightarrow WW^{(*)}$

↓Main control sample is defined with two cuts
 >∆φ_{||}>1.5 rad. and M_{||}>80 GeV
 ↓Because of tt contamination in main control sample, need b-tagged sample (M_{||} cut is removed)

Control Samples for $H \rightarrow WW$

▶ <u>Define:</u>

α_{ww}=(QCD WW bg)/(QCD WW in control samp.)
 α_{tt}=(tt bg)/(tt in b-tagged control sample)
 α_{tt}^{WW}=(tt in WW sample)/(tt in b-tagged sample)

Summary of Detector Performance Requirements (ATLAS)

Combination of multiple channels will require a certain understanding of all signatures and sub-detectors

> One fb⁻¹ of usable data (or less) will be needed for calibration

H→γγ (+0,1,2 jets)	100 <m<sub>H<150</m<sub>	γ calibration (c _{tot} <0.7%) γ/jet separation (>1000 rejection for quark jets for ε _γ =80%)
ttH, H→bb	80 <m<sub>H<130</m<sub>	b-tagging (ε _b =60%, 100/10 rejection against light/c jets) extraction of background shape

Summary of Detector Performance Requirements (ATLAS)

H→ττ, τ→l,h (+0,1,2 jets)	110 <m<sub>H<150</m<sub>	Missing E_{T} (<10% Higgs mass resolution), lepton ID (>10 ⁷ fake suppression with ID), jet tagging (5%/10% energy scale uncertainty for central/forward jets), central jet veto (need to address low E_{T} jet resolution requirements)
H→ZZ ^(*) , Z→4I	120 <m<sub>H<600</m<sub>	Lepton isolation/efficiency (achieve ~100/1000 rejection against Zbb/tbb for ε _{lepton} ~90%)
H→WW ^(*) , W→Iv (+0,1,2 jets)	120 <m<sub>H<200</m<sub>	"top killer" (>10 rejection), jet tagging (5%/10% energy scale uncertainty for central/forward jets), jet veto

ATLAS Grid Computing

Exclusion limits (cross-section X branching ratio) with 100 pb⁻¹ (2007) compared with SM predictions

If the SM Higgs does not exist ATLAS may be able to exclude it (M_H>115 GeV) with ~1 fb⁻¹ (2008)

