

2006 Aspen Winter Conference "Particle Physics at the Verge of Discovery" Feb. 15, 2006

Status of the LHC Detectors and Plans for Commissioning

Jim Rohlf Boston University

Thanks to Peter Jenni for providing ATLAS material.

f=11.245 kHz T=88.924 μs

1000

and I

Detectors: Overview

- muon detectors
 tracking in B field
 EM calorimetry
- hadron calorimetry

A Toroidal Large hadron collider AparatuS (ATLAS) 7 kTons 0.5 T toroid, 2 T solenoid, (25 m)² × 46 m magnet=40% of \$\$, good stand-alone muon res. Compact Muon Solenoid (CMS) 14 kTons 4 T solenoid, (15 m)² x 22 m magnet=25% of \$\$, high res.tracker & ECAL

Detector Technology

	inner	pixels	pixels		
Tracking	harrel	silicon strips/ straw tubes	silicon strips		
	ondeen	ailicon strips/ straw tubes	silicon strips		
	endcap	sincon strips/ straw tubes	sincon strips		
FCAL	barrel	liquid argon / Pb	crystals (PbWO ₄)		
ECAL	endcap	liquid argon / Pb	crystals (PbWO ₄)		
	barrel	scintillator / Fe	scintillator / brass		
HCAL	endcap	liquid argon / Cu	scintillator / brass		
	forward	liquid argon / Cu-W	quartz / Fe		
	barrel	drift tubes	drift chambers		
Muon		+resistive plate (trigger)	+resistive plate (trigger)		
	end cap	drift tubes, cathode strip	cathode strip		
		+ thin gap (trigger)	+ resistive plate (trigger)		

 $\int\! Bdl \, vs \, \eta,$ per ϕ slice RDR

ATLAS Magnet

Solenoid (integrated design with LAr) Feb.04: Inserted into LAr cryostat Jun.04: Tested at full current

Barrel Toroid Jun.04: Surface test at full current Aug.05: Installation at P1 complete

Endcap Toroid Move to P1 May06/Sept.06

CMS Magnet

Assembly and testing at surface

Sept.05: coil insertion

Nov.05: inner vacuum

	rapidity	stations	trigger
ATLAS barrel	$\eta < 1.0$	3, 50 µm	3 RPC
endcap	$ 1 < \eta < 2.7$	3, 60 $\mu { m m}$	3 TGC
CMS barrel	$\eta < 1.3$	4, 100 μm	4 DT+6 RPC
endcap	$ 1 < \eta < 2.4$	4, 100 $\mu { m m}$	4 RPC

A major effort is spent in the preparation and testing of the barrel muon stations (MDTs and RPCs for the middle and outer stations) before their installation in-situ

The electronics and alignment system Installation of barrel muon station fabrications for all MDTs are on schedule

ATLAS Endcap

72 TGC and 32 MDT "Big Wheel" sectors have to be assembled. This work is now in full swing in the Hall where previously the Barrel Toroid and the LAr integration and tests were done.

"Big Wheel" endcap muon MDT sector assembled in Hall 180

"Big Wheel" end-cap muon TGS sector assembled in Hall 180

ATLAS Endcap Cosmic Ray Residuals for Small Wheel Sector CO4

ATLAS Muon Test Beam

Large-scale facility for alignment, mechanical, and system tests, with chamber stations in the SPS H8 beam

50

52

54 56 58

60

62 time [hours]

CMS Barrel DT

Shown here YB+2 and YB+1 essentially complete, 42 chambers installed and commisioned Dec.05 To do: 54 chambers before magnet test, 64 after magnet test, and 40 underground

CMS DT Commisioning with Cosmic Rays

Occupancy dist.

Sector commissioning autotriggering Sector test Read with local DAQ Sector test-regional Triggering with TTC 3-Sector test Cosmic trigger 3 sectors FED intgration Compete readout chain

Autotriggering has random time distribution

No time corr.

layer	mean $[\mu m]$	sigma $[\mu m]$
1	-8 ± 15	518 ± 7
2	-12 ± 7	546 ± 6
3	-14 ± 7	552 ± 5
4	$14{\pm}7$	537 ± 6
5	-14 ± 6	547 ± 5
6	28 ± 7	559 ± 6
7	-22 ± 7	556 ± 5
8	15 ± 6	526 ± 5

 $\sigma_{media_{old}} = 543 + 2 \text{ mu}$

Drift time corr.

 $\sigma_{media_{new}} = 232 \pm 2$ mu

CMS Muon Endcap

cathode-strip chambers

All chambers (468) and electronics are produced, >3/4 are installed and commissioned

CMS CSC Slice Test: overview

- Goal: One 60° Trigger Sector:
 - overlap with DT sectors 10-11
 - Multiple stations
 - YE+1, YE+2 (and YE+3)
 - ME+1, ME+2, ME+3 (and ME+4)
 - Total of up to 39 chambers
- Trigger options:
 - Self-trigger on cosmics: TrackFinder/SectorProcessor
 - Externally provided, scintillator in front of ME+2
- DAQ options:
 - Local DAQ (DDU-spy channel): DQM and calibration
 - Global DAQ (DCC S-Link): CMS-DQM, EvF, off-line analyses

Recent milestone: CSC trigger and readout with global DAQ up to the online event filter unit

CMS Muon RPC

resistive plate chambers

Ring +1/+2 mostly installed

YE -1/+1 installed

CMS $\mu^+\mu^-$ mass resolution: 1 day at 2 x 10³³ cm⁻²s⁻¹

2 isolated muons with $p_{\rm T}>$ 20 GeV/c, 10 GeV/c

CERN/LHCC 2006-001, CMS TDR 8.1, 02 Feb. 2006

Calorimetry

		res. (0 50 GeV	material in	front	thickness		$\Delta\eta imes$.	$\Delta \phi$		
FCA	ATLAS	1.3%		2-4 χ ₀		21-36 χ_0 from		front 0.	front $0.003 imes 0.1$		
ECAL								middle $0.025 imes0.025$			
								back O .	05 × 0.025		
	CMS	0.8%		0.4-1.3	0.4-1.3 χ_0 25-27		χο	0.0174×0.0174			
		coverage			res. @ 100 GeV		thic	ckness	$\Delta\eta imes \Delta\phi$		
HCAL	ATLAS	TLAS barrel		$ \eta < 1.0$ 8		8		10 λ	front 0.1 $ imes$ 0.1		
	extended bar	rel	0.8 <	$\eta < 1.7$					back $0.2 imes0.1$		
	endcap		1.5 <	$\eta < 3.2$					0.1- $0.2 imes 0.1$		
	forward		\mid 3.1 $< \mid$ $\eta \mid$ $<$ 4.9 \mid						0.2×0.2	.2 × 0.2	
	CMS barr	el	$ \eta < 1$.4	10%)	11	-15 λ	0.087×0.087	,	
	endcap		1.4 <	$\eta <$ 3.0					0.087×0.087	-0.17	
	forward		3.0 <	$\eta <$ 5.0	20%)			0.17×0.17		

ATLAS

CMS

Jets at the LHC

ATLAS ECAL (LAr) Barrel

Commisioning on surface: complete cold test (with LAr) during summer 2004 at CERN (dead channels much below 1%)

LAr barrel EM calorimeter module at one of the assembly labs

LAr barrel EM calorimeter after insertion into the cryostat

EM beam test results: Energy resolution

Impact on Higgs mass resolution

Acceptance: 84% within $\pm 2 \sigma$

ATLAS HCAL (Tile) + ECAL (LAr) Barrel

In garage in collision hall...

Cosmic ray in the tiles

ATLAS ECAL+HCAL Barrel

ATLAS

another view

ATLAS pion resolution (HCAL)

 π^{\pm} E-resolution from ATLAS had. calorimeter test beam data: ~ 70%/ \sqrt{E}

ATLAS ECAL (LAr) Endcaps

<u>End-Cap C:</u> Surface cold tests with LAr are finished, with very good results (dead channels well below 1%) <u>End-Cap A:</u> Surface cold test measurements are finished, and it will be ready for transport end of January 2006

Endcap cryostat A before insertion of the FCAL

End-Cap A during the surface cold tests

ATLAS Endcaps

Next major activity: Endcap A installation from Jan $06 \rightarrow Mar 06$

First LAr End-Cap arriving on the Tile Calorimeter in the cavern through the shaft on the C-side

CMS ECAL (crystals)

44k crystals received (71% of barrel)

Months

CMS ECAL electronics

FE

LVRB

VFE

100%

65%

Motherboard

34%

GOH

70 %

CMS ECAL Energy Resolution

Electron test beam

CERN/LHCC 2006-001, CMS TDR 8.1, 02 Feb. 2006

CMS HCAL Barrel

All components of HCAL have been extensively tested in test beam and surface hall SX5

CMS HCAL Endcap

CMS HCAL Forward

First subdetector to be lowered into pit (May 06)

CMS HCAL: radioactive source calibration

CMS HCAL longitudinal shower profile

CMS ECAL+HCAL Energy Resolution

CMS HCAL: Cosmic Rays at SX5

Note:

- 1) time shift of $\frac{1}{2}$ bin due to transit time of cosmic ray.
- 2) Energy loss.

Real-time data access: http://cmsmoe3.cern.ch:40000

Fit:

ATLAS Silicon Tracker (SCT) Barrel

All four cylinders are complete and at CERN. The SCT is being integrated with the TRT.

SCT acceptance tests (each barrel fully tested)

Barrel	Total Channels	Total Defects
3	589824	1483
4	737280	841
5	884736	1818
6	1032192	5720
Total	3244032	9862

99.7% of ch. fully functional

Commissioning at the surface

ATLAS Barrel STC

ATLAS SCT Endcap

All disks for the first end-cap are finished, and they are very well advanced for the second one

The recovery of a failure in the end-cap LMTs (low mass tapes for electrical services) is proceeding according to plan (requiring fabrication of new LMTs)

Completed SCT endcap disk

STC endcap Support cylinder

ATLAS Transition Radiation Tracker (TRT)

Barrel TRT during insertion of the last modules (February 2005) Cosmic rays on the surface

ATLAS TRT Endcap

The module construction for the TRT is complete, and the first end-cap side (A and B wheels) has been assembled and integrated.

TRT assembly detail

First of 2 endcap TRT fully assembled

Qualified Flex modules - Available and Estimated

ATLAS Pixels

The rate for assembled and fully qualified modules meets the needs for a 3-hit system in time (1766 modules needed)

Two completed Pixel disks, each with 2.2 M channels

CMS Silicon Tracker

CMS Si Tracker Barrel

L4+ Pisa

CMS Si Tracker Endcap (TEC+)

Aachen, Jan. 2006

Being read out and debugged

CMS Si Tracker Inner Disk

integration at Torino

CMS Si Tracker Inner Barrel

Completed integration of sectors L2 and L3 for the magnet test

CMS Si Tracker Integration and Commissioning

- The TIB + and TIB will be integrated in Italy and inserted into TOB+/- at CERN.
- TOB+/- will be integrated at CERN.
- TEC + will be integrated in Aachen.
- TEC will be integrated at CERN.
- Initial commissioning of Electronics, DCS and DAQ will take place CERN in B 904. It should be fully commissioned by March 2006.
- After Transport to Point 5, and installation of the Tracker into CMS, the cabling and systematic checks of the System, the Commissioning process can continue in CMS. Depending on the assumptions you make about LHC, there should be ~ 6 months to continue the commissioning in CMS.

CMS Pixels

720 barrel modules 672 endcap modules

Exected vertex res.:

 $\sigma_{r,\phi} = 10 \mu \text{m}$ $\sigma_z = 20 \mu \text{m}$

4 layer beam test in Dec. 05

The Pixel Systems will use the Tracker Integration Facility in B 186 from Q4 2006

ATLAS Trigger / DAQ

ATLAS Level-1 Trigger

The level-1 system (calorimeter, muon and central trigger logics) completed the final ASICs developments and testing of full-functionality prototype modules; series production has started

CMS Trigger / DAQ

Level-1 Maximum trigger rate	100 kHz	No. Readout Units	≈512
System efficiency	98%	No. Builder Units	≈512
Event Flow Control	≈10º Mssg/s	No. Filter Unit	≈n x 512
Builder network (512x512 port) ≥500-1000 Gb/s	No. (C&D) Network ports	≈10000
Event filter computing power	≈5 10º MIPS	No. programmable units	≈10000

CMS Level-1 Trigger Integration

HCAL/regional calorimeter trigger (RCT)

- done
- ECAL/RGT

- done

RCT/global calorimeter trigger (GCT)/global trigger

- in progress GT/trigger timing and control - starting DT/global muon trigger (GMT) - starting CSC/GMT - starting RPC/GMT -starting CSC/DT - starting

ATLAS vertical slice integration with test beam

~ 90 million events collected
~ 4.5 TB of data:
$$e^{\pm}, \pi^{\pm} \qquad 1 \rightarrow 250 \text{ GeV}$$

 $\mu^{\pm}, \pi^{\pm}, p \qquad \text{up to 350 GeV}$
 $\gamma \qquad ~ 30 \text{ GeV}$
B-field = 0 \rightarrow 1.4 T

CMS slice integration with test beam (2004)

Muon-HCAL Sync.

Cosmic Rays in ATLAS

Dec. 05: First cosmics muons registered in the stations installed in the bottom sector of the

spectrometer

Cosmic Rays in CMS

(Dec. 15, 2005) Dan Green: "Wow - we may have an experiment..."

CMS HCAL insertion into solenoid planned for this month...

to be followed by slices of tracker & ECAL for integration with muon/magnet/DAQ/trigger using cosmic rays in situ

ATLAS and

CMS

will be ready for first pp collisions!

