Thomas Hebbeker, RWTH Aachen Belgian-Dutch-German school September 2003

pp physics?

Here: center of mass collisions of

- hadron
- proton + proton (p+p) ISR, RHIC, LHC proton + antiproton (p+p) SPS, TEVATRON colliders

at high energy ($\sqrt{s} = E_1 + E_2 >> m_n$)

Not in focus:

- one nucleon at rest (fixed target) DONUT
- electron/positron + proton HERA •
- low energy collisions CPLEAR ... •
- heavy ion collisions RHIC ...

Wanted:

high energy

p p p h y S i C S

Introduction

Part II Standard Model Physics

Part III Higgs

Part IV New Phenomena

References

Part I

Part I

Introduction

- p p collisions
- accelerators and detectors
- kinematical variables
- structure functions
- cross sections
- challenges
- luminosity determination

Part IIStandard Model PhysicsPart IIIHiggsPart IVNew Phenomena

References

S 1 C S

p

p

h

Collider versus Fixed Target

$$\vec{s} = [(E_1, \vec{p_1}) + (E_2, \vec{p_2})]^2$$
$$= [(2E, \vec{0})]^2$$
$$= 4E^2$$

$$\vec{s} = [(E_1, \vec{p_1}) + (E_2, \vec{p_2})]^2$$

= $[(E, \vec{p}) + (m, \vec{0})]^2$
= $(E + m)^2 - \vec{p}^2$
= $E^2 + 2mE + m^2 - (E^2 - m^2)$
= $2mE + 2m^2$
 $\approx 2mE$

T Hebbeker Collider versus Fixed Target E » m 2000 TeV (!) 1 TeV 1 TeV E m 1 GeV 1 GeV 1 GeV 1 GeV $\vec{s} = [(E_1, \vec{p_1}) + (E_2, \vec{p_2})]^2$ $= [(E, \vec{p}) + (m, \vec{0})]^2$ $\vec{s} = [(E_1, \vec{p_1}) + (E_2, \vec{p_2})]^2$ $=(E+m)^2 - \vec{p}^2$ $=[(2E,\vec{0})]^2$ $=E^{2}+2mE+m^{2}-(E^{2}-m^{2})$ $=4E^{2}$ $=2mE+2m^{2}$ $\sqrt{s} = 2 T e V$ $\approx 2 m E$) $\sqrt{s} = 2 T e V$

DONUT: fixed target experiment

LEAR: Low energy hadron collisions

Machine: $\overline{p} (100 \text{ MeV} - 2 \text{ GeV}) + H_2 \dots (gas)$

Experiments: CPLEAR, Crystal Barrel ...

Physics: CP violation, exotic mesons, H ...

complete annihilation

+p

1982-1996

baryonic chemical potential μ_{R} [GeV]

Effective Center of Mass Energy

In high energy hadron collisions 2 constituents undergo hard scattering:

Examples: $qq \rightarrow W$ $gg \rightarrow h(!)$ $qg \rightarrow qg$

<u>The Livingston Plot: Past, Present & Future(?)</u>

Proton or Antiproton ? Physics:

Proton or Antiproton ?

Kinematics I

"boost" of center of mass system along beam axis = a priori unknown!

Kinematical variables:

- azimuthal angle ϕ
- polar angle θ
- energy <u>E</u>
- momentum *p*
- transverse momentum p_T
- longitudinal momentum p_L

rapidity

• pseudorapidity $\eta = -\ln \tan \frac{\sigma}{2}$

 $y = \frac{1}{2} \ln \frac{E + p_L}{E - p_L}$

 $m \ll E, p_I$

Kinematics III

 $y = \frac{1}{2} \ln \frac{E + p_L}{E - p_L}$

Kinematical variables:

- azimuthal angle ϕ
- polar angle θ
- energy <u>E</u>
- momentum *p*
- transverse momentum p_T (::
- longitudinal momentum p_L
- rapidity

• pseudorapidity $\eta = -\ln \tan \frac{\sigma}{2}$

T.Hebbeker

Boost invariance ?

 $y_1 - y_2$

Rapidity I

T.Hebbeker

Boost along z:

$$y' = \ln \frac{E' + p'_L}{\sqrt{p_T^2 + m^2}} = \ln \frac{\gamma (E + \beta p_L) + \gamma (p_L + \beta E)}{\sqrt{p_T^2 + m^2}}$$
$$= \ln[\gamma (1 + \beta) \frac{E + p_L}{\sqrt{p_T^2 + m^2}}] = y + \ln\gamma (1 + \beta)$$

$$y_1' - y_2' = y_1 - y_2$$

Missing transverse energy/momentum

- a) energy = momentum (masses small)
- b) \vec{p}_T can be measured for all "visible" particles:
 - i) small angle to beam pipe: escapes but $\vec{p}_{\scriptscriptstyle T}$ small
 - ii) large angle: seen in detector
- c) "invisible particles" (neutrinos, gravitons, ...):

$$\sum_{invis} \vec{p}_T = -\sum_{vis} \vec{p}_T$$

 $MET = |\sum_{invis} \vec{p}_T|$

Example: $W \rightarrow \mu \nu$

plane perpendicular to beam:

Hadron colliders and detectors

Fermilab/Tevatron

T.Hebbeker

SPS, LHC / CERN

LHC = Large Hadron Collider

UA2 UA1

SPS = Super Proton Synchrotron

SPS, Tevatron, LHC

)	2003
	SPS	Tevatron	LHC
Particles	$p+\overline{p}$	$p+\overline{p}$	<i>p</i> + <i>p</i>
c.m. energy TeV	0.6	2.0	14
luminosity 10 ³⁰ /cm²/s 1/fb / year	6 0.05	50 0.5	10000 100
Bunches	6 + 6	36 + 36	2835 + 2835
Bunch separation ns	3800	396	25

ATLAS = A Toroidal LHC ApparatuS

CMS = Compact Muon Solenoid

CMS response to particles

Structure functions momentum $x \cdot p$ $F_2(x) = x \left[\frac{4}{9}u(x) + \frac{1}{9}d(x) + ...\right]$ mentum p $Q^2 = 90 \text{ GeV}^2$

Structure functions

Cross section calculation in pp

$$\frac{d\,\sigma_F(\sqrt{s},Q^2)}{d\,V} = \sum_{i,j} \int dx_i \,dx_j \,f_i(x_i,Q^2) \,f_j(x_j,Q^2) \frac{d\,\sigma_F^{ij}(x_i,x_j,Q^2)}{d\,V}$$

Note:

may trade:

energy \leftrightarrow luminosity

Example:

In principle top discovery at SPS!

Example: Higgs event in CMS tracker

CMS

Н->μμμμ m(H)=150GeV

Electrons Muons Hadrons pt<2GeV Hadrons pt>2GeV

Example: Higgs event in CMS tracker

T.Hebbeker

Luminosity determination in pp

T.Hebbeker

Part I

Introduction

- p p collisions
- accelerators and detectors
- kinematical variables
- structure functions
- cross sections
- challenges
- luminosity determination

Part IIStandard Model PhysicsPart IIIHiggsPart IVNew Phenomena

References

h S 1 C S

p

p

T.Hebbeker

Appendices

Rapidity IV

Distribution of particles $dN/d\eta$ (form invariant !) in p p collisions ?

In center of mass system of hard collision ($2 \rightarrow 2$):

$$y = \ln \frac{E + p_L}{\sqrt{p_T^2 + m^2}} \le \ln \frac{2E}{m} = \ln \frac{\sqrt{s'}}{m}$$

Rapidity range:

$$-\ln\frac{\sqrt{s'}}{m} \le y \le \ln\frac{\sqrt{s'}}{m}$$

Empirical in pp collisions:

$$\frac{N_{tot}}{d N} \sim \ln \sqrt{s}$$
$$\frac{d N}{d \eta} \sim const$$

Thomas Hebbeker, RWTH Aachen Belgian-Dutch-German school part II September 2003

Part I Part II

p

p

p

h

S

1

C

S

Standard Model Physics

- cross section calculation
- QCD and jets
- \cdot W and Z

Introduction

- charm and bottom
- top

Part IIIHiggsPart IVNew PhenomenaReferences

Structure Functions

Cross section calculation in pp

T.Hebbeker

$$\frac{d\sigma_F(\sqrt{s},Q^2)}{dV} = \sum_{i,j} \int dx_i \, dx_j \, f_i(x_i,Q^2) \, f_j(x_j,Q^2) \frac{d\sigma_F^{ij}(x_i,x_j,Q^2)}{dV}$$

Note:

may trade:

energy \leftrightarrow luminosity

Example:

In principle top discovery at SPS!

Estimate of X section $p \, \bar{p}
ightarrow W^- X$

Ansatz:

$$\sigma_W(\sqrt{s}) = \int \int f^d(x_1) \, f^{ar{u}}(x_2) \, \sigma^{dar{u}}(\sqrt{s'}) \, dx_1 \, dx_2 \ s' = x_1 \, x_2 \, s$$

Structure Functions:

Rough parametrisation:

$$f_d(x) = rac{0.2}{x} \qquad f_{ar{u}}(x) = 2\,f_d(x)$$

Cross section (quark level):

$$\sigma^{dar{u}}(\sqrt{s}') = \sigma_0 \cdot rac{s\,\Gamma_W^2}{(s'-m_W^2)^2+m_W^2\Gamma_W^2}$$

$$\sigma_0 = rac{12\pi}{m_W^2} \cdot rac{\Gamma_{qq}}{\Gamma_W} pprox rac{12\pi}{m_W^2} \cdot rac{6}{9} pprox rac{25}{m_W^2}$$

$$\sigma^{dar{u}}(\sqrt{s}') pprox rac{25}{m_W^2} \cdot \left\{ egin{array}{c} 1 & m_W - \Gamma_W/2 < \sqrt{s'} < m_W + \Gamma_W/2 \ 0 & ext{else} \end{array}
ight.$$

Calculate:

$$\sigma_W(\sqrt{s}) = 25 \cdot 0.2 \cdot 0.4 \cdot rac{1}{m_W^2} \cdot \int_{x_2^{min}}^1 rac{1}{x_2} \left[\int_{x_1^{min}}^{x_1^{max}} rac{1}{x_1} \, dx_1
ight] \, dx_2$$

$$\sigma_W(\sqrt{s}) pprox 25 \,\cdot\, 0.2 \,\cdot\, 0.4 \cdot rac{1}{m_W^2} \cdot \int_{x_2^{min}}^1 rac{1}{x_2} \left[2rac{\Gamma_W}{m_W}
ight] \,dx_2$$

$$\sigma_W(\sqrt{s}) = -4 \cdot rac{1}{m_W^2} \cdot rac{\Gamma_W}{m_W} \cdot \ln rac{m_W^2}{s}$$

Results:

$$1/\text{GeV} = 2 \cdot 10^{-16} \text{ m}^2$$

 $m_W = 80 \text{ GeV}$
 $\Gamma_W = 2 \text{ GeV}$

$$\sigma_W(\sqrt{s}) \approx 4 \text{ nb} \cdot \ln \frac{s}{m_W^2}$$

FERMILAB:
 $\sigma_p(\sqrt{s}) \approx 25 \text{ nb}$
LHC(pp!):
 $\sigma_p(\sqrt{s}) \approx 40 \text{ nb}$

QCD = Quantum Chromodynamics

- **Gauge theory:** quarks with 3 colors (**r**,**g**,**b**)
 - **SU(3)** 8 gluons (color + anticolor $\overline{r}, \overline{g}, \overline{b}$)

spin 1/2

T.Hebbeker

self coupling, running, confinement

Calculation of QCD processes

jets reveal hard processs (direction, energy) experiment and theory must use the same language: jets need to be defined: "jet algorithm"

Cone defined in η , ϕ projection, radius = $\sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ (typ = 0.7) Isolated low energy particles are ignored

Sum of 4-momenta of objects inside cone = jet 4-momentum

potential problems: seed dependence, infrared sensitivity ... several variations exist

kT jets

a) list of hadrons = clusters

b) each cluster:

$$d_i = p_{T,i}^2$$

each pair of clusters:

$$d_{ij} = \min(p_{T,i}^2, p_{T,j}^2) \cdot R_{ij}^2$$

c) minimum of d_{ij} , d_i → combine or remove from list)

d) iterate: goto b) till list empty

... several variations exist

Inclusive jet production

Conclusion: agreement with QCD over many orders of magnitude!

- production cross section
- decay modes
- W mass $\left(\frac{m_W}{m_Z}\right)^2 = \cos^2 \theta_W = 1 - \sin^2 \theta_W$ Test of SM [
- W width

W,Z: production and decay

W decay probability:

 $Br \sim N_C$

Z decay probability:

$$Br \sim N_C(g_V^2 + g_A^2)$$

ev	11%	Clear	ee	3%
μν	11%	signature	μμ	3%
τν	11%		ττ	3%
ud	33%		uu + dd + ss + cc + bb	70%
CS	33%		νν	20%

W: width

... difficult...

Tevatron combined: $2.160 \pm 0.047 \, GeV$ (indirect+direct)

W,Z: production cross section

pp-physics with charm and bottom

- cross section
- new mesons/baryons/hybrids/...?
- hadron masses

CP violaton

- hadron lifetimes
- branching fractions (rare decays ?)

Example: D meson masses

Reconstruction of decay vertices

Top Discovery

Top event in D0

Top event in CDF

Run II

(~ 100 events)

 $[\]sqrt{s}$ (GeV)

Top Mass

Part I Part II

p

p

p

h

S

1

C

S

Standard Model Physics

- cross section calculation
- QCD and jets
- \cdot W and Z

Introduction

- charm and bottom
- top

Part IIIHiggsPart IVNew PhenomenaReferences

T.Hebbeker

Appendices

Hadronization

QCD

"string"

Thomas Hebbeker, RWTH Aachen Belgian-Dutch-German school part III September 2003

Part I	Introduction	
Part II	Standard Model Physics	
Part III	Higgs	
	 SM higgs: what do we know ? production and decay detection extended higgs models 	
Part IV	New Phenomena	
References		

p

p

p

h

У

S

i

C

S

The SM Higgs

Known (if exists):

- couples to mass (!): bosons and fermions
- scalar, no elm. or strong interactions
- \cdot properties calculable as a function of $\, m_{H}^{} \,$
- LEP: 114 GeV < m_H < 219 GeV (95%)

To be explored:

- <u>existence</u> ? produce and detect !
- properties ? precise measurements $\rightarrow e^+ e^-$ collider

Historical reminiscence: LEP and Higgs

T.Hebbeker

T.Hebbeker

Higgs Decay Modes

Higgs Decay Width

WW, ZZ fusion

 $H \rightarrow \gamma \gamma$, (leptons)

T.Hebbeker

Higgs (130-190 GeV) $\rightarrow WW$ [2 TeV]

T.Hebbeker

Run 169236 Event 4468684 Thu Feb 13 02:26:58 2003

Higgs discovery prospects at LHC

T.Hebbeker

Extended Higgs Models - Supersymmetry

Minimal SuSy = MSSM:

couples to couples to up-fermions

down-fermions

8 real fields - 3 ($W^+ W^- Z$) = 5 higgs bosons:

h	H	A	H^+ H^-
		CP odd	

mass relations (lowest order):

 $m_h < m_Z < m_H$ $m_h < m_A$ $m_W < m_{\mu^{\pm}}$ $m_h < 130 \, GeV$ incl. radiative corrections

MSSM Higgs Limits LEP

In addition: limits on charged higgses...

$\tan\beta > 2.4$

MSSM Higgs Masses

T.Hebbeker

For large $\tan \beta$ coupling $h, H \leftrightarrow bb$ very large ! (similar for A)

MSSM Higgs Search LHC

Many channels:

- charged Higgs H^+, H^-
- if $\tan\beta$ small, h decay signatures ~ SM

MSSM Higgs Discovery at LHC?

T.Hebbeker
Part I	Introduction
Part II	Standard Model Physics
Part III	Higgs
	 SM higgs: what do we know ? production and decay detection extended higgs models
Part IV	New Phenomena
References	

p

p

p

h

У

S

i

C

S

T.Hebbeker

Appendices

Higgs production

T.Hebbeker

MSSM Higgs Limits LHC

Thomas Hebbeker, RWTH Aachen Belgian-Dutch-German school part IV September 2003

p p	Part I Part II	Introduction Standard Model Physics
р	Part III	Higgs
h	Part IV	New Phenomena
y S i C		 SUSY motivation searches: R-Parity conserved R-Parity violated Extra dimensions Black holes
S	References	

SUperSymmetry

Particle	Spin	Susy-Partner	Spin
$ u_e$	1/2	$ ilde{ u}_e^L$	0
e [–] u	1/2 1/2	$\tilde{e}_{\boldsymbol{L}}^{-}, \tilde{e}_{\boldsymbol{R}}^{-}$ $\tilde{u}_{\boldsymbol{L}}, \tilde{u}_{\boldsymbol{R}}$	0 0
d	1/2	$\tilde{d}_{L}, \tilde{d}_{R}$	0
$oldsymbol{\gamma}, \mathrm{Z}, oldsymbol{h}, oldsymbol{H}, oldsymbol{A}$	1, 0	$ ilde{\chi}^0_1, ilde{\chi}^0_2, ilde{\chi}^0_3, ilde{\chi}^0_4$	1/2
$\mathrm{W}^{\pm}, H^{\pm}$	1,0	$ ilde{\chi}_1^\pm, ilde{\chi}_2^\pm$	1/2
g	1	$\widetilde{\mathbf{g}}$	1/2

if R-parity (-1 for sparticles) is conserved: \Rightarrow LSP = Lightest SUSY particle = $\tilde{\chi}_1$ = stable

SUSY

Nice features:

- symmetry relating bosons (forces) <=> fermions (matter)
- higgs mass $m_{_{H}}$ under control
- grand unification (incl. gravity!) possible

H

neutralino = dark matter candidate

Other properties:

H

- SUSY broken: no sparticle seen yet

Grand Unification ?

Unification of the Coupling Constants in the SM and the minimal MSSM

SUSY interactions (R conserved)

Feynman graphs:

take any SM vertex with 3 or 4 particles

replace two legs by the corresponding sparticles (~)

MSUGRA parameters

MSUGRA = Minimal SUperGRAvity model

- m_0 = universal scalar mass at GUT scale (s..., higgs)
- $m_{1/2}$ = universal gaugino mass at GUT scale (...inos)
- $\tan \beta = v_2/v_1 = ratio of higgs vacuum expectation values$
 - A_0 = universal sfermion mass mixing parameter [GUT]

 $sgn \mu$ = sign of higgsino mass parameter

Required:

```
M(SUSY) < 1 TeV
```

LSP without electromagnetic and strong coupling

Note: m_h given by $m_0 \dots$ LEP higgs limit = severe constraint

Cosmological Constraints I

<u>Assume</u>: neutralino = χ_0 =dark matter = WIMP

Early universe:

- Very high temperature and pressure: creation and annihilation: equilibrium
- 2) High temperature and pressure: annihilation dominates: $N(\tilde{\chi}_0) \downarrow$
- 3) Low temperature and pressure:

freeze out: $N(\tilde{\chi}_0) = const$

observation

heor

WMAP measurement of cosmic microwave background

Cosmological Constraints II

T.Hebbeker

SUSY search in pp

strategy:

high SM QCD background: jets

need something beyond: leptons and/or missing energy

Examples:

- squarks and gluinos (missing energy)
- neutralinos and charginos (leptons and missing energy)

strong

electroweak

Jets + Missing Energy: Squark and Gluino Search

Chiorboli/Tricomi

SUSY with R parity violation

- neutralino unstable, no dark matter candidate !
- lepton and/or baryon number violated

Example diagrams:

Example: Neutralino Decays via $\lambda_{121}, \lambda_{122}, ...$ T.Hebbeker

production:

χ

signature:

р

q

q

/ 1, Front(X-Y)

at least 3 charged leptons!

Example: Neutralino Decays via $\lambda_{121}, \lambda_{122}, ...$

production:

<u>experimental signature:</u>

at least 3 charged leptons!

(Large) Extra Dimensions

Why is gravity so different from the other interactions?

<u>mass and length scales:</u> $M_{ew} \sim 10^2 \, GeV$ $l_{ew} \sim 10^{-18} \, m$ $M_{Pl} \sim \frac{1}{\sqrt{G_N}} \sim 10^{19} \, GeV$ $l_g \sim 10^{-35} \, m$

Idea: only one fundamental scale $M_s \sim 100 - 1000 \text{ GeV}$ gravity appears weak since gravitons propagate in 4 + n dimensions ("dilution")

Arkani-Hamed, Dimopoulos, Dvali

• gravitons G show up in high energy physics experiments as real or virtual particles **pp colliders!**

Real Graviton Emission in p p

T.Hebbeker

Virtual Graviton effects in p p

Black holes ?

predicted in large extra dimension models

production: mass 1 - 10 TeV, xsection large (~ nb)

<u>decay:</u>

- Hawking radiation
- All SM d.o.f. equally likely
- Multiplicity up to 30

p p	Part I Part II	Introduction Standard Model Physics
р	Part III	Higgs
h	Part IV	New Phenomena
y S i C		 SUSY motivation searches: R-Parity conserved R-Parity violated Extra dimensions Black holes
S	References	

References

• lectures:

F. Gianotti, LHC physics

www.wlap.org/cern/lectures/summer/2000/gianotti

J. Womersley, Physics at Hadron Colliders

dOserver1.fnal.gov/users/womersley/brazil1.pdf...brazil4.pdf

- experimental homepages:
 - www-cdf.fnal.gov
 - www-d0.fnal.gov
 - atlas.web.cern.ch
 - cmsinfo.cern.ch
- theory:

Physics at Run II workshop

fnth37.fnal.gov/run2.html

T.Hebbeker

Appendices

