The lecture series presents an overview of the physical principles and basic techniques of particle detection, applied to current and future high energy physics experiments. Illustrating examples, chosen mainly from the field of collider experiments, demonstrate the performance and limitations of the various techniques.

Main topics of the series are: interaction of particles and photons with matter; particle tracking with gaseous and solid state devices, including a discussion of radiation damage and strategies for improved radiation hardness; scintillation and photon detection; electromagnetic and hadronic calorimetry; particle identification using specific energy loss dE/dx, time of flight, Cherenkov light and transition radiation.
1. Introduction

Outline

- Lecture 1 - Introduction
 - What to measure?
 - Detector concepts
 - Interaction of charged particles
 - Momentum measurement
 - Multiple scattering
 - Specific energy loss
 - Ionisation of gases
 - Gas amplification
 - Single Wire Proportional Counter

- Lecture 2 - Tracking Detectors
- Lecture 3 - Scintillation and Photodetection
- Lecture 4 - Calorimetry, Particle ID
- Lecture 5 - Particle ID, Detector Systems

C. Joram, L. Ropelewski
L. Ropelewski, M. Moll
C. D’Ambrosio, T. Gys
C. Joram
C. Joram, C. D’Ambrosio
1. Introduction

Literature

- **Text books** (a selection)
 - C. Grupen, Particle Detectors, Cambridge University Press, 1996
 - R.S. Gilmore, Single particle detection and measurement, Taylor&Francis, 1992
 - W. Blum, L. Rolandi, Particle Detection with Drift Chambers, Springer, 1994

- **Review Articles**
 - Many excellent articles can be found in Ann. Rev. Nucl. Part. Sci.

- **Other sources**
 - R. Bock, A. Vasilescu, Particle Data Briefbook http://www.cern.ch/Physics/ParticleDetector/BriefBook/
 - Proceedings of detector conferences (Vienna CI, Elba, IEEE, Como)
 - Nucl. Instr. Meth. A
A W^+W^- decay in ALEPH

$e^+e^-(\sqrt{s}=181 \text{ GeV})$
$\rightarrow W^+W^- \rightarrow q\bar{q}\mu\nu\mu$
$\rightarrow 2$ hadronic jets
$\mu +$ missing momentum
Reconstructed B-mesons in the DELPHI micro vertex detector

\[\tau_B \approx 1.6 \text{ ps} \quad l = c\tau \gamma \approx \gamma \cdot 500 \mu m \]
Introduction

1. Introduction

Idealistic views of an elementary particle reaction

- Usually we can not ‘see’ the reaction itself, but only the end products of the reaction.
- In order to reconstruct the reaction mechanism and the properties of the involved particles, we want the maximum information about the end products!
Introduction

A simulated event in ATLAS (CMS) $H \rightarrow ZZ \rightarrow 4\mu$

pp collision at $\sqrt{s} = 14$ TeV, $\sigma_{\text{inel.}} \approx 70$ mb

We are interested in processes with $\sigma \approx 10^{-10}$ fb

$L = 10^{34}$ cm$^{-2}$ s$^{-1}$, bunch spacing 25 ns

≈ 23 overlapping minimum bias events / BC
≈ 1900 charged + 1600 neutral particles / BC

Brave people have started to think about a Super LHC upgrade to $L = 10^{35}$ cm$^{-2}$ s$^{-1}$!!!
Higgs production: a rather rare event!

Cartoon by Claus Grupen, University of Siegen
The ‘ideal’ particle detector should provide...

- coverage of full solid angle (no cracks, fine segmentation)
- measurement of momentum and/or energy
- detect, track and identify all particles (mass, charge)
- fast response, no dead time
- practical limitations (technology, space, budget)!

Particles are detected via their interaction with matter.

Many different physical principles are involved (mainly of electromagnetic nature). Finally we will always observe ionization and excitation of matter.
1. Introduction

Detector Systems

- number of particles
- event topology
- momentum / energy
- particle identity

Can’t be achieved with a single detector!

→ integrate detectors to detector systems

Geometrical concepts

Fixed target geometry

“Magnet spectrometer”

- Limited solid angle $d\Omega$ coverage
- rel. easy access (cables, maintenance)

Collider Geometry

“4π multi purpose detector”

- “full” $d\Omega$ coverage
- very restricted access
Magnet concepts for 4π detectors

solenoid

- Large homogenous field inside coil
- Weak opposite field in return yoke
- Size limited (cost)
- Rel. high material budget

Examples:
- DELPHI: SC, 1.2T, Ø5.2m, L 7.4m
- L3: NC, 0.5T, Ø11.9m, L 11.9m
- CMS: SC, 4.0T, Ø5.9m, L 12.5m

toroid

- Field always perpendicular to \vec{p}
- Rel. large fields over large volume
- Rel. low material budget
- Non-uniform field
- Complex structure

Example:
- ATLAS: Barrel air toroid, SC, ~1T, Ø9.4, L 24.3m
2 ATLAS toroid coils

Artistic view of CMS coil

1. Introduction

CMS Solenoid
Momentum measurement

\[p_T = p \sin \theta \]
Momentum measurement

We measure only p-component transverse to B field!

\[p_T = qB\rho \quad \rightarrow \quad p_T \ (\text{GeV/c}) = 0.3B\rho \ (\text{T} \cdot \text{m}) \]

\[\frac{L}{2\rho} = \sin \frac{\alpha}{2} \approx \frac{\alpha}{2} \quad \rightarrow \quad \alpha \approx \frac{0.3L \cdot B}{p_T} \]

\[s = \rho(1 - \cos \frac{\alpha}{2}) \approx \rho \frac{\alpha^2}{8} \approx \frac{0.3L^2B}{8p_T} \]

The sagitta s is determined by 3 measurements with error $s(x)$:

\[s = x_2 - \frac{x_1 + x_3}{2} \]

\[\left. \frac{\sigma(p_T)}{p_T} \right|_{\text{meas.}} = \left. \frac{\sigma(s)}{s} \right|_{\text{meas.}} = \frac{\sqrt{\frac{3}{2}}\sigma(x)}{s} = \frac{\sqrt{\frac{3}{2}}\sigma(x) \cdot 8p_T}{0.3BL^2} \]

\[\left. \frac{\sigma(p_T)}{p_T} \right|_{\text{meas.}} \propto \frac{\sigma(x) \cdot p_T}{BL^2} \]

For N equidistant measurements, one obtains (R.L. Gluckstern, NIM 24 (1963) 381)

\[\left. \frac{\sigma(p_T)\text{meas.}}{p_T} \right| = \frac{\sigma(x) \cdot p_T}{0.3BL^2} \sqrt{\frac{720}{N + 4}} \quad \text{(for } N \geq \sim 10) \]
Interaction of charged particles

Scattering

An incoming particle with charge z interacts elastically with a target of nuclear charge Z. The cross-section for this e.m. process is

$$\frac{d\sigma}{d\Omega} = 4zZe^2 \left(\frac{m_e}{\beta p} \right)^2 \frac{1}{\sin^4 \theta/2}$$

Rutherford formula

- Approximation
 - Non-relativistic
 - No spins
- Average scattering angle $\langle \theta \rangle = 0$
- Cross-section for $\theta \to 0$ infinite!
- Scattering does not lead to significant energy loss
Interaction of charged particles

In a sufficiently thick material layer a particle will undergo …

Multiple Scattering

In a sufficiently thick material layer a particle will undergo multiple scattering. The radiation length X_0 is the thickness of the material layer where the change in the angle of the particle is significant. Approximation $\theta_0 \propto \frac{1}{p} \sqrt{\frac{L}{X_0}}$, where X_0 is the radiation length of the medium (discuss later).

$$\theta_0 = \theta_{\text{RMS plane}} = \sqrt{\left\langle \theta_{\text{plane}}^2 \right\rangle} = \frac{1}{\sqrt{2}} \theta_{\text{RMS space}}$$
1. Introduction

Interaction of charged particles

Back to momentum measurements:
What is the contribution of multiple scattering to \(\frac{\sigma(p)}{p_T} \)?

Remember:

\[
\frac{\sigma(p)}{p_T} \propto \sigma(x) \cdot p_T
\]

More precisely:

\[
\frac{\sigma(p)}{p_T} \bigg|_{MS} = 0.045 \frac{1}{B \sqrt{LX_0}}
\]

Example:

\(p_t = 1 \text{ GeV/c}, L = 1 \text{m}, B = 1 \text{ T}, N = 10 \)
\[
\sigma(x) = 200 \mu \text{m}: \quad \frac{\sigma(p_T)}{p_T} \bigg|_{\text{meas.}} \approx 0.5\%
\]

Assume detector (\(L = 1\text{m} \)) to be filled with 1 atm. Argon gas (\(X_0 = 110\text{m} \)),

\[
\frac{\sigma(p)}{p_T} \bigg|_{MS} \approx 0.5\%
\]
Interaction of charged particles

Detection of charged particles

Particles can only be detected if they deposit energy in matter. How do they lose energy in matter?

Discrete collisions with the atomic electrons of the absorber material.

\[
\begin{align*}
\langle \frac{dE}{dx} \rangle &= -\int_0^\infty NE \frac{d\sigma}{dE} \hbar d\omega \\
N &: \text{electron density}
\end{align*}
\]

Collisions with nuclei not important \((m_e << m_N)\) for energy loss.

If \(\hbar \omega, \hbar k\) are in the right range \(\Rightarrow\) ionization.
1. Introduction

Instead of ionizing an atom or exciting the matter, under certain conditions the photon can also escape from the medium.

⇒ Emission of **Cherenkov** and **Transition** radiation. (See later). This emission of real photons contributes also to the energy loss.
Interaction of charged particles

1. Introduction

Average differential energy loss \(\langle dE/dx \rangle \)

… making Bethe-Bloch plausible.

Energy loss at a single encounter with an electron

\[
F_e = \frac{ze^2}{b^2} \quad \Delta t = \frac{2b}{v} \quad \Delta p_e = F_e \Delta t
\]

\[
\Delta E_e = \frac{(\Delta p_e)^2}{2m_e} = \frac{2z^2e^4}{b^2v^2m_e} = \frac{2r_e^2m_ec^2z^2}{b^2} \cdot \frac{1}{\beta^2}
\]

Introduction classical electron radius

\[
r_e = \frac{e^2}{m_ec^2}
\]

How many encounters are there ?

Should be proportional to electron density in medium

\[
N_e \propto \frac{Z}{A} N_A \cdot \rho
\]

The real Bethe-Bloch formula.

\[
\langle dE/dx \rangle = -4\pi N_A r_e^2 m_e c^2 z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \gamma^2 \beta^2}{I^2} T_{\text{max}} - \beta^2 - \frac{\delta}{2} \right]
\]
Interaction of charged particles

Energy loss by Ionisation only → Bethe - Bloch formula

\[
\langle \frac{dE}{dx} \rangle = -4\pi N A e^2 m_e c^2 z^2 Z \frac{1}{A} \left(\frac{1}{\beta^2} \right) \left[\ln \frac{2m_e c^2 \gamma^2}{I^2} T_{\text{max}} - \beta^2 - \frac{\delta}{2} \right]
\]

- dE/dx in [MeV g\(^{-1}\) cm\(^2\)]
- valid for “heavy” particles (m ≥ m\(_\mu\)).
- dE/dx depends only on β, independent of m!
- First approximation: medium simply characterized by Z/A ~ electron density

"kinematical term" \(\beta \gamma \approx 3-4\) minimum ionizing particles, MIPs

"relativistic rise"

Z/A = 1 “Fermi plateau”

Z/A ~ 0.5

Energy loss by Ionisation only → Bethe - Bloch formula

\[
\langle \frac{dE}{dx} \rangle \propto \ln \beta^2 \gamma^2
\]

CERN – PH/DT2 Particle Detectors – Principles and Techniques
Bethe - Bloch formula cont’d
\[\langle dE/dx \rangle = -4\pi N_A r_e^2 m_e c^2 z^2 Z \frac{1}{A \beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \gamma^2 \beta^2}{I^2} T_{\text{max}} - \beta^2 - \frac{\delta}{2} \right] \]

- Formula takes into account energy transfers

\[I \leq dE \leq T_{\text{max}} \quad I : \text{mean excitation potential} \quad I \approx I_0 Z \quad \text{with} \quad I_0 = 10 \text{ eV} \quad \text{(approx., } I \text{ fitted for each element)} \]

- Relativistic rise - \(\ln \gamma^2 \) term - attributed to relativistic expansion of transverse E-field → contributions from more distant collisions.

- Relativistic rise cancelled at high \(\gamma \) by “density effect”, polarization of medium screens more distant atoms.
 Parameterized by \(\delta \) (material dependent) → Fermi plateau

- Many other small corrections

Measured and calculated dE/dx
Interaction of charged particles

Real detector (limited granularity) cannot measure \(<dE/dx> \)!
It measures the energy \(\Delta E \) deposited in a layer of finite thickness \(\delta x \).

For thin layers or low density materials:

→ Few collisions, some with high energy transfer.

\[e^- \]
\[\delta \text{ electron} \]

→ Energy loss distributions show large fluctuations towards high losses: "Landau tails"

Example: Si sensor: 300 \(\mu \text{m} \) thick. \(\Delta E_{\text{m.p.}} \approx 82 \text{ keV} \) \(<\Delta E> \approx 115 \text{ keV} \)

For thick layers and high density materials:

→ Many collisions.

→ Central Limit Theorem → Gaussian shaped distributions.

\[e^- \]
\[\Delta E_{\text{m.p.}} \approx <\Delta E> \]
Interaction of charged particles

1. Introduction

Landau’s theory \cite{Landau1944}

\[f(x, \Delta E) = \frac{1}{\xi} \Omega(\lambda) \]
\[\Omega(\lambda) \approx \frac{1}{\sqrt{2\pi}} \exp\left\{ -\frac{1}{2} (\lambda + e^{-\lambda}) \right\} \]

\[\lambda = \frac{\Delta E - \Delta E_{m.p.}}{\xi} \]

\[\xi = \frac{2\pi N e^4 Z}{m_e v^2 A} \]

\[x \text{ (300 \text{ \textmu m Si})} = 69 \text{ mg/cm}^2 \]

charge collection is not 100%

\[\Delta E_{m.p.} \sim 82 \text{ keV} \]
\[<\Delta E> \sim 115 \text{ keV} \]

\[\xi = 26 \text{ keV} \]

\[\Delta E_{m.p.} \sim 56.5 \text{ keV} \]

\[\approx 82 \text{ keV} \]

\[\approx 115 \text{ keV} \]

includes a Gaussian electronics noise contribution of 2.3 keV

L. Alexander et al., CLEO III test beam results

300 \text{ \textmu m Si}

CERN Academic Training Programme 2004/2005