
1. PP TH 03/04 Accelerators and Detectors 1

pp physics, RWTH, WS 2003/04, T.Hebbeker

2003-12-03

1. Accelerators and Detectors

In the following, we concentrate on the three machines SPS, Tevatron and LHC with the experiments
UA1, UA2, CDF, D0, ATLAS and CMS, representing the past, present and future of high energy p p
physics1.

The accelerators are treated as ‘black boxes’: the parameters relevant for the experimenters are re-
viewed, but the physics and technical aspects are not covered.

The detector design is discussed first in general terms, then the six detectors are presented and com-
pared in some detail.

1.1. Accelerators

parameter SPS Tevatron LHC
time 1981-1990 1987-2009 2007-2020
particles p + p̄ p + p̄ p + p
c.m. energy /GeV 630 1960 14000
circumferencel/km 6.91 6.28 26.66
peak lumi /1030/cm2/s 6 50 10000
average lumi /fb−1/year 0.05 0.5 100
number of bunches 6 + 6 36 + 36 2808 + 2808
particles (p, p̄) / bunch /1010 15, 8 25, 3 11
bunch separation∆t/ns 3800 396 25
beam crossing angle 0 0 300 µrad
inelastic collisions / crossing 0.1 2 20
inelastic collisions /s 5 · 105 4 · 106 8 · 108

particle production /s 2 · 107 3 · 108 1 · 1011

bunch sizeσx, σy/µm ∼ 50 30 16
bunch lengthσz/cm 20 38 7.5

Note: The figures for the SPS refer to the best performance reached; the Tevatron parameters are those
expected for the data taking period 2004 of ‘run IIa’; the LHC numbers are design values which will
probably not be reached before the end of the decade.

Reference: Review of Particle Physics 2002 (Phys. Rev. D 66 (2002) 1).

Some comments:

i) The beam crossing angle in the LHC (in which two separate beams circulate!) avoids unwanted
parasitic collisions:

1the generic expression p p physics covers bothp p andp p̄ collisions
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Note:25 ns = 7.5 m.

ii) The number̃n of inelastic collisions per bunch crossing can be calulated this way:

ñ = Ṅ∆t = L σinel ∆t σinel ∼ 50 mb (1)

where∆t denotes the (average) bunch spacing.

iii) The particle production rate is given by the average particle multiplicity per inelastic collision
(increases from 40 at SPS to 140 at LHC2) and the event production rate.

iv) In general the bunch spacing is not uniform in time:

ExampleTevatron:
Radiofrequency =RF = 53 MHz. This corresponds toτ = 1/RF = 19 ns andd = τ c =
5.7 m. But not all ‘buckets’ can be filled in this accelerator scheme, only every seventh, resulting in
a smallest bunch separation of7 · 19 ns = 132 ns.

Every132 ns-clock-signal is called a ‘tick’. This operating mode was originally foreseen for Run IIb,
but it might never be realised. It would also require a nonzero beam crossing angle for the reasons
explained above.

Currently, in run IIa, only every third tick is filled, that is∆t = 396 ns. However, the timing is more
complicated: Along the Tevatron circumference of aboutl = 6.3 km one can fit exactly153 ticks,
which are divided into 3 groups of 53 ticks, since the Tevatron has a threefold symmetry3. But 53 is
not a multiple of 3, so that some ‘adjustment’ is necessary, resulting in 12 bunches (= 36 ticks):

2Pythia simulation: all ‘stable’ particles
3so that CDF and D0, at a distance ofl/3, get the same luminosity
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Example:LHC4:
Radiofrequency =RF = 400.8 MHz. This corresponds toτ = 1/RF = 2.5 ns andd = τ c =
75 cm. Only every 10th bucket is used, resulting in a bunch spacing of25 ns:

Here ‘glitches’ are unavoidable due to the transfers between the different accelerators: PS→ SPS→
LHC. Sometimes bunches remain empty, up to 119 in a row! This results in a total of 2808 bunches

4for pp operation; in heavy ion mode the bunch separation will be even smaller
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per LHC ring/beam. The ‘empty crossings’ can be used to measure backgrounds (electronic noise,
cosmics).

v) The transverse beam size is given by the ‘squeezing’ in the nearest quadrupoles. The total longi-
tudinal beam size can not exceed half the ‘wavelength’d; here we quote the r.m.s of the distribution,
σz, which is then limited byd/(4

√
3). The bunch length might be substantially shorter than this

limit, if stable beam acceleration is limited to a smaller phase interval.

Beyond the parameters listed in the table, the experimenter is interested in background rates (e.g.
proton halo scraping collimators upstream5) and - related - the mimimum radius of the beam tube (in
order to place vertex detectors as close to the interaction region as possible).

1.2. Detectors

Since the magnet choice has a major impact on the design of all the other detector parts, the different
types of magnets are described first in this chapter.

1.2.1. Magnets

A good momentum measurement requires precise detectors and ‘thick’ magnetic fields with a large
B field. The track curvature radius grows with particle energy/momentum, so that at high energy
colliders this task becomes particularly difficult.

Some formulae:

i) Trajectory inside magnetic field

A charged particle describes a helixinside a homogeneous magnetic field; the radius of curvature for
a particle with charge±1 is given by

R =
pB

e B
= 3.3 m ·

pB/GeV

B/T
(2)

wherepB denotes the component of~p perpendicular to~B.

Example:The Tevatron superconducting dipole magnets produceB = 4.4 T. For 1 TeV particles
this implies a radius ofR = 750 m. This number is smaller than the geometrical Tevatron radius of
1 km, since the magnets do not cover all the circumference!

5this is not the most important background source at the LHC, see section 1.2.2
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ii) Multiple scattering
Multiple deflections in the Coulomb field of nuclei result in both a spatial and an angular displace-
ment:

The overall scattering angle is Gaussian distributed. In one projection the width is given by

θMS =
13.6 MeV

p

√
L

X0

(1 + 0.038 ln
L

X0

) (3)

for relativistic particles with unit charge. The last factor is close to1 and can often be ignored.L is
the traversed matter thickness andX0 the radiation length of the material.

The track displacement is (approximately)

yMS =
1

√
3

L θMS (4)

and

sMS =
1

4
√

3
L θMS (5)

Reference: Review of Particle Physics 2002 (Phys. Rev. D 66 (2002) 1).

Example:A muon ofp = 1 GeV is deflected by typicallyθMS = 0.60 (in one projection) when
passing throughL = 1 cm of iron (X0 = 1.8 cm).

iii) Curvature measurement
The momentum resolution depends on the detector precision, on the amount of material the partic-
le has to traverse, and on the measurement principle. In collider experiments often the sagittas is
measured inside the magnet region:
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At least three coordinate measurements are necessary. It is also possible to measure the track direc-
tion inside and/or outside the magnet area and to include the collision point as a constraint in the
momentum determination - but we will not discuss these points here.

The sagitta is given by (→ tutorial)

s =
e B L2

8 pB

= 0.3 m
B/T (L/m)2

8 pB/GeV
(6)

Obviously, the more precise thes measurement, the better the momentum resolution. The quadratic
dependence onL is very important! Some comments on this dependence:

- intuitive explanation: trajectory in homogeneous field (angle~p − ~B approx. constant) = parabola:
transverse momentum∼ L, spatial deviation∼ L2.
- doubling the radius of an inner tracking detector = fourfold improvement in momentum resolution!
Difficult to reach by increasingB or by improving detector resolution!
- If a detector is subdivided into two independent identical halves, each of thicknessL/2: Measuring
the sagitta twice and combining the momentum measurements yields a resolution which is worse
by a factor4/

√
2 compared to the full detector’s resolution. To avoid this degradation a common

track fit through both detector parts is mandatory, implying: no material (MS) in between, negligible
alignment uncertainties.

Example:A muon ofp = 100 GeV traversing a magnetic fieldB = 1 T (at right angles) of
thicknessL = 1 m results in a sagitta of onlys = 0.4 mm.

A sagitta measurement requires three coordinate measurements, for example the measurement ofy1,
y2 andy3 at the coordinatesx1, x2 = x1 + L/2, x3 = x1 + L along the trajectory:

s = y2 −
y1 + y3

2
. (7)

The formula implies that the central point should be measured more precisely than the outer ones.
This can be realized by usingfour identical coordinate detectors, which measure independently with
a resolution of∆y atx = 0, x = L/2, x = L/2 (!) andx = L:

s =
y2a + y2b

2
−

y1 + y3

2
. (8)

In this case the sagitta error is

∆s = ∆y ·
√

1/4 + 1/4 + 1/4 + 1/4 = ∆y (9)
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Example:A detector resolution of∆y = 0.1 mm yields∆s =
√

1.5 ∆y = 0.12 mm using three
detectors and∆s = ∆y = 0.1 mm with four detectors.

iv) Momentum resolution
In many cases the relative momentum resolution can be parametrised as follows:

∆p

p
=

∆pdet

p
⊕

∆pMS

p
= cdet ·

p

GeV
⊕ cMS (10)

wherea ⊕ b stands for
√

a2 + b2.

Here ~p ⊥ ~B was assumed, the more general case is discussed below. This formula applies for
example when a muon track through an iron yoke is measured several times in ‘holes’ inside the
material along the trajectory.

Note that the detector resolution contribution is growing withp, while the MS part is independent of
momentum:

From the sagitta formula (6) we can calculate the detector termcdet:

∆p

p
=

∆s

s
= 8 ·

∆y

eL2 B
· p = 26.4 ·

∆y/m

L2/m2 B/T
· p/GeV (11)

assuming∆s = ∆y, thus

cdet = 0.026 ·
σ/mm

L2/m2 B/T
(12)

All these formulae assume~B ⊥ ~p!

The multiple scattering term can be calculated in a similar way from the fake sagitta (equation 5):

cMS =
∆p

p
=

sMS

s
=

1

4
√

3
L

13.6 MeV

p

√
L

X0

· 8
1

L2 B
· p =

16 MeV

L B

√
L

X0

(13)

=
0.052

L/m B/T

√
L

X0

(14)
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Example:We assume a magnetic field of2 T and an iron layer ofL = 1 m thickness. For the 4
chamber model with∆y = 0.1 mm we get

cdet = 0.13% cMS = 19% (15)

Thus the detector contribution becomes relevant only for momenta above∼ 100 GeV.

v) Magnetic field configurations

Since the beam must not be disturbed by the detector’s magnetic field only two field configurations
seem possible:

a)Solenoid

The symmetry axis of the solenoid coincides with the beam line, so~v × ~B = ~0. The cross section
of the coil can be circular, but also a rectangular design will work. The field lines extend far outside
the magnet; to avoid related problems one can capture the field in a cylindrical magnet yoke outside
the solenoid and feed it back. Another advantage of the yoke is the extra field that can be used to
(re)measure track momenta.
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b) Toroid

Toroids contain closed B field lines, thus there is no need for extra yokes, avoiding the resulting
multiple scattering!

In the endcap regions often iron toroids are used:

c) There is a notable exception to the rule~v × ~B = ~0: the UA1 detector used a horizontal dipole
field (generated by a ‘rectangular solenoid’) which was oriented perpendicular to the beam:
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Of course this requires another magnetic field outside the detector to compensate. A dipole magnet
can never be used in electron accelerators, due to the induced synchrotron radiation.

Some general comments on magnet technology:

- The magnetic fields can be generated by ‘conventional’ or by superconducting coils, the latter type
is used in all modern experiments. The resulting field strengths are in the range0.7 T (UA1 dipole)
to 4 T (CMS sc. solenoid). These values are limited by the power dissipation (conventional) and
the breakdown of superconductivity for highB fields. The field strength inside an iron magnet is
normally close to the saturation value, i.e.B = 1.5 − 1.9 T.

- Superconducting magnets need a cryostat, thus complicating the detector design.

- Mechanical forces can be important.Example:the CMS iron yoke can move byO(cm) when the
coil is turned on/off.

- The energy stored is huge. Quenches must be avoided.Example: ATLAS toroid = 1500 MJ.

- An iron filled magnet needs substantially lower currents than an air magnet.Examples:D0 central
toroid: each coil:n I = 25 kA, ATLAS barrel toroid: each coil = 3 MA.

Comparison of ‘physics performance’:

The two main aspects are:

* multiple scattering: dominated by iron yoke (if existing); severe limitation for momentum resoluti-
on, see above.

* field geometry:

a) barrel toroid: bending in plane containing beam
+ ~p ⊥ ~B, in barrel toroidB L2 largest at small angles!
- no vertex constraint (long collision region)
- no field in central detector part

b) barrel solenoid: axial field, bending in plane perpendicular to beam
o ~p⊥ is measured, resolution indep. of angle (without MS)
+ vertex constraint (small beam diameter)
+ B field inside and close to beam pipe

c) barrel dipole: bending in plane containing beam,φ dependent!



1. PP TH 03/04 Accelerators and Detectors 11

+ B L2 largest at small angles, works even forη ± ∞.
- no vertex constraint (long collision region)
- no bending for tracks‖ ~B
- needs compensation

In the forward region there is less choice: only toroids make sense (~P ≈⊥ ~B).

Above the momentum resolution formulae were given for barrel magnets atθ = 900, η = 0. For
other polar angles the following modifications have to be taken into account for cylindrical magnets:
- solenoids measurepT (→ p = pT / sin θ).
- toroids measurep, effective track lengthL = L0/ sin θ, resolution∼ 1/L2 (sagitta method).
- similar for dipole, but additionalφ dependence.
- multiple scattering increases: effective thickness= L0/ sin θ.

Summary of the magnet configurations of the six pp detectors:

experiment UA1 UA2 CDF D0 ATLAS CMS
solenoid - - 1.6 T sc 2.0 T sc 2.0 T sc 4.0 T sc
solenoid yoke - - iron - yes 1.6 T iron
barrel toroid - - - 1.9 T iron 4 T sc air -
endcap toroid - yes iron 2.0 T iron 4 T sc air -
endcap yoke - yes ! - - - 2 T iron
dipole 0.7 T - - - - -
dipole yoke 1.8 T iron - - - - -

Some (expected) performance figures (depend of course on position resolution) forη = 0:

CMS central tracker:

∆p

p
= 0.012% · p/GeV ⊕ 0.5% (16)

ATLAS toroid:

∆p

p
= 0.01% · p/GeV ⊕ 1.5% (17)

D0 toroid:

∆p

p
= 0.3% · p/GeV ⊕ 18% (18)

Finally a few pictures:

UA2 detector:
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D0 toroid:
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Note: here no sagitta measurement, but determination of track direction before and after traversing
magnet.

Atlas toroid coil:

CMS magnetic field:


