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Among models of electroweak symmetry breaking and physics 
beyond the Standard Model

                       Supersymmetry   (SUSY)

provides one of the most important organizing principles.

In this set of lectures, I will explain the formal basis of SUSY 
and its application to models of elementary particle physics.

A very useful reference on this subject is:

     S. Martin,  “A Supersymmetry Primer”, hep-ph/9709356

Textbooks on SUSY in elementary particle physics by Baer and 
Tata and by Dreiner, Haber, and Martin will appear soon.



The outline of these lectures will be:

1.   Formalism of SUSY

    symmetry relations of SUSY, construction of Lagrangians

2.  The Minimal Supersymmetric Standard Model

   particle content of the MSSM, the Lagrangian, description 
         of symmetry-breaking

3.  SUSY spectrum and reactions

   SUSY mass spectrum, iIllustrative SUSY reactions, theory of  
           SUSY-breaking parameters

4.  Higgs and dark matter in SUSY

   EWSB in the MSSM,  Higgs spectrum, dark matter candidates 
         and theory of the dark matter mass density



We might begin our study by addressing the most 
important problem with the minimal form of the 
Standard Model (MSM):

In the MSM, all masses arise from the spontaneous 
breaking of SU(2)xU(1).  This in turn is due to the 
vacuum expectation value (“vev”) of the Higgs scalar 
field    .   

To stabilize a nonzero vev, we postulate a potential
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Why is                  ?         “Because it is.”

Either sign of       is possible in principle; there is no preference.

     receives large additive radiative corrections from 

where       is the largest momentum at which the MSM is still valid.  
This already says that the criterion                  is not a simple 
condition on the bare value of     .

If                                       ,                           ,             
this formalism requires cancellations in the first 36 decimal 
places.  This is called the “gauge hierarchy problem”.
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There are two ways to solve this problem:

For example, postulate that      is not an elementary field 
but rather is a bound state.  Then we need new 
interactions at 1 TeV (“technicolor”) to form this bound 
state.

Today, this approach is disfavored.  Typically, technicolor 
models give large electroweak corrections and  large 
flavor-changing neutral current amplitudes.

• Lower the cutoff      to about 1 TeVΛ

ϕ



In particular, this symmetry should forbid the mass term             
Violation of the symmetry will re-introduce this term, but 
hopefully in such a way that we can compute the sign and 
magnitude.

                          shift symmetry   ➤  little Higgs models
                      gauge symmetry  ➤  extra dimension models
                      chiral symmetry  ➤  supersymmetry models
From here on, we choose the last option and follows its 
implications to the end.

• Insist that       is a fundamental scalar field, but 
postulate a symmetry that constrains its potential

ϕ

δϕ = εv

δϕ = ε · A

δϕ = ε · ψ

µ
2|ϕ|2



So, in the rest of this lecture, I would like to work out 
the symmetry structure that includes the transformation

where     is a complex scalar field and       is a spin-    
field.     is a spin-    parameter, represented classically 
by an anticommuting number.  In quantum theory, this 
transformation is generated by

where       is a conserved charge:  

δεφ = ε · ψ

εα

1

2

[ε · Q, φ] = ε · ψ

Qα [Qα, H] = 0

1

2
φ ψ



This structure looks innocent, but it is not.

Consider the quantity:   

This object has the following properties:

      it is a 4-vector: 

      it is conserved:

      it is nonzero:

which vanishes only if       and          annihilate all states.

So,       is a nontrivial conserved 4-vector charge.

   * why not a scalar ?  see below ...

{Qα, Q
†
β}

{Qα, Q†
β} = 2γm

αβRm
∗

[{Qα, Q
†
β}, H] = 0

〈ψ| {Qα, Q†
α
} |ψ〉 = 〈ψ|QαQ†

α
|ψ〉 + 〈ψ|Q†

α
Qα |ψ〉

= ‖Q†
α
|ψ〉 ‖2 + ‖Qα |ψ〉 ‖2

(1)
Qα

Q†
α

Rm



In a relativistic theory , conservation of energy and 
momentum already imposes severe restrictions on 
scattering,

e.g., 2 ➤ 2 scattering amplitudes depend only on 1 
parameter, the CM polar angle. 

Coleman and Mandula proved that, if there is a second 
conserved vector, the S-matrix must be trivial:  S = 1.



So, we have no choice:   We must set  

Then, e.g., 

This equation has important implications:

We cannot supersymmetrize just the Higgs field, leaving most 
of the MSM unchanged.  To build a theory with SUSY, all fields 
in the theory must transform under SUSY.

Even the minimal SUSY extension of the MSM must double the 
number of particles and fields.  This leads to a quite complex 
theory, but also one with an interesting structure with many 
implications for the theory of Nature.

{Q1, Q
†
1
} = 2(E − P 3)

R
m

= P
m



To go further, we need to understand 4-d relativistic fermions a 
little better.

There are two basic spin-1/2 representations of the Lorentz 
group.  Each is 2-dimensional

Let                               ;   then 

                                                  is Lorentz invariant         
           
                transforms like    

C or P carries                   , but these are not symmetries of the 
Standard Model.

ψL → (1 − i"α · "σ/2 −
"β · "σ/2)ψL

ψR → (1 − i"α · "σ/2 + "β · "σ/2)ψR

(1)
c =

(
0 −1

1 0

)

ψT
1Lcψ2L = −εαβψ1Lαψ2Lβ

−cψ∗

L ψR

ψL ↔ ψR



A Dirac fermion can be written as a pair of L-fermions:

If we represent

The Dirac Lagrangian becomes

with  m = M.  In general, m can be a complex number.

Note that

Ψ =

(
ψ1L

ψ2R

)
=

(
ψ1L

−cψ∗

2L

)

γ
m

=

(
0 σ

m

σ
m

0

)
σm = (1,"σ)m

σm = (1,−"σ)m

L = Ψiγ · ∂Ψ − MΨΨ

= ψ†
1L

iσ · ∂ψ1L + ψ†
2L

iσ · ∂ψ2L

−(mψT

1Lcψ2L − m∗ψ†
1L

cψ∗
2L)

(1)

ψT

1Lcψ2L = ψT

2Lcψ1L

(ψT

1Lcψ2L)∗ = ψ
†
2L

(−c)ψ∗
1L = −ψ

†
1L

cψ∗
2L

(1)

cσ
m = (σm)T

c



Actually, the most general Lagrangian for massive 4-d 
fermions has the form

(Here and henceforth, I drop the subscript L.)

                                         gives a Dirac fermion

                 with a conserved fermion number

                              gives Majorana fermions

In general, m is a complex symmetric matrix, a mixture 
of Majorana and Dirac mass terms.

L = ψ†
kiσ · ∂ψk − (mjkψT

j cψk − m∗
jkψ†

jcψ
∗
k)

mjk =

(
0 m

m 0

)

mjk = mδjk

Qψ1 = +ψ1 Qψ2 = −ψ2



The SUSY charges are 4-d fermions.  We can write the         as 
L-fermions, the          as R-fermions.  The minimal SUSY has 
two of each: 

Now it is clear that                   has no scalar component.  The 
mimimal SUSY algebra in 4-d is then:

As an action on fields, with anticommuting L-fermion 
parameters         ,  this takes the form:

Qα

Q†
α

{Qα, Q
†
β}

{Qα, Q
†
β} = 2σm

αβPm

[δξ, δη] = 2i[ξ†σmη − η†σmξ] ∂m

α = 1, 2

ξ, η



Now we can look for representations of this algebra.

The simplest representation includes a complex scalar field      
and an L-fermion field     .  This is the chiral supermultiplet.
Its particle content includes
          
           2 bosons                  +    2 fermions

For convenience in writing the algebra, I add a second complex 
field     that will have no associated particles.

We need to check that this transformation
      1.  satisfies the fundamental commutation relations
      2.  leaves a suitable Lagrangian invariant

φ

φ, φ∗ ψL, (ψ∗)R

F

ψ

δξφ =
√

2ξT cψ

δξψ =
√

2iσncξ∗∂nφ +
√

2ξF

δξF = −
√

2iξ†σm∂mψ

(1)



Check #1 on     : 

The check on      is equally easy.  The check on     
requires an extra trick, but it works.

F ψ

φ

[δξ, δη]φ = − δξ(
√

2ηT cψ) − (ξ ↔ η)

=
√

2ηT
√

2iσncξ∗∂nφ − (ξ ↔ η)

= 2iηT cσncξ∗∂nφ − (ξ ↔ η)

= 2i[ξ†σnη − η†σnξ] ∂nφ

(1)



Check #2 on 

using integration by parts freely under 

L = ∂mφ∗∂mφ + ψ†iσ · ∂ψ + F ∗F
∫

d
4
x

δξL = ∂mφ∗∂m(
√

2ξT cψ) + (−
√

2∂mψ†cξ∗)∂mφ

+ψ†iσm∂m [
√

2iσncξ∗∂mφ +
√

2ξF ]

+[
√

2i∂nφ∗ξT cσn +
√

2ξ†F ∗]iσmψ

+F ∗[−
√

2iξ†σm∂mψ] + [
√

2i∂mψ†σmξ]F

= −φ∗
√

2ξT c∂2ψ +
√

2∂nφ∗ξT cσnσm∂n∂mψ

+
√

2ψ†cξ∗∂2φ −
√

2ψ†σmσncξ∗∂m∂nφ

+
√

2iψ†σm∂mF ξ +
√

2i∂mψ†σmξF

+
√

2iξ†F ∗σm∂mψ −
√

2iF ∗ξ†σm∂mψ

= 0

(1)



So far, our theory is trivial.  But we can give it interactions in a 
straightforward way.

Let            be an analytic function of     , the “superpotential”.  

Let

the 2nd line rearranges to:

the 3rd line is proportional to               , which vanishes.
 

W (φ) φ

LW = F
∂W

∂φ
−

1

2
ψT cψ

∂2W

∂φ2

−
√

2iξ†σn(∂nψ
∂W

∂φ
+ ψ∂nφ

∂2W

∂φ2
)

ψαψβψγ

δξLW = F
∂2W

∂φ2
(
√

2ξT cψ) −
√

2F ξT cψ
∂2W

∂φ2

−
√

2iξ†σm∂mψ
∂W

∂φ
− ψT c

√
2iσncξ∗∂nφ

∂2W

∂φ2

−ψT cψ
∂3W

∂φ3

√
2ξT cψ

(1)



In fact, the most general (renormalizable) supersymmetric 
Lagrangian involving only spin 0 and spin 1/2 fields is 

where        is built from an analytic function

The       are Lagrangian multipliers with constraint equations

Eliminating the       using these equations, we find the 
potential

L = ∂mφ∗
k∂mφk + ψ†

k
iσm∂mψk + F ∗

k Fk + (LW + h.c.)

LW W (φk)

LW = Fk
∂W

∂φk
−

1

2
ψT

j cψk
∂W

∂φj∂φk

Fk

F ∗

k = −

∂W

∂φk

VF =

∑

k

∣∣∣∣
∂W

∂φk

∣∣∣∣
2

Fk



It is important that V ≥ 0  and  V = 0 only if all     = 0 .

Recall that 

This is  ≥ 0  and is = 0 only if 

Now consider

If the vacuum is supersymmetric, this must vanish.  
Unbroken SUSY then implies

       < H >  = 0          <F> = 0 

Becasue H ≥ 0, SUSY can be spontaneously broken only 
if it is impossible to find a state where <H> = 0.

〈0| {Qα, Q†
α
} |0〉 = 〈0| (H − P 3) |0〉

〈0| [ξT cQα, ψk] |0〉 = 〈0|√2iσnξ∗∂nφk + ξFk |0〉
= ξ 〈0|Fk |0〉

(1)

Qα |0〉 = Q†
α
|0〉 = 0

Fk



These are exact results, and so it must follow that the vacuum 
energy vanishes in perturbation theory, 

I would like to show you another type of cancellation that is also 
seen in SUSY perturbation theory.  Consider

Eliminating F, we find

      and        have equal masses = |m|.

W =
m

2
φ2

+
λ

3
φ3

L = ∂mφ∗∂mφ + ψ†iσm∂mψ − |mφ + λφ2|2

−
1

2
(m + 2λφ)ψT cψ +

1

2
(m + 2λφ)∗ψ†cψ∗

(1)φ ψ

= 0



From our previous experience, we might expect an 
additive radiative correction to the mass.  Check this at 
m = 0 : 

= −4iλ2

∫
d4p

(2π)4
i

p2

+
1

2
(−2iλ)(+2iλ)

∫
d4p

(2π)4
tr[

iσ · p

p2
c
iσT

· (−p)T

p2
c]

= 0

(1)

(no diagrams)



In fact, it may be shown quite generally that the superpotential 
W receives no radiative corrections.  In 1 loop:

The field strength renormalization can be nonzero

so the fields in W can be rescaled by radiative corrections.

This cancellation is more obvious in a manifestly supersymmetric 
perturbation theory (supergraphs).

= 0 

=  FF + = 0

= iδZσ · p = −iδZ p2



In a supersymmetric generalization of the MSM, the non-
renormalization of the superpotential would eliminate the 
dangerous additive radiative corrections to the Higgs mass.

This makes SUSY a good starting point for the construction 
of models of physics beyond the SM.  We will turn to that 
model construction in the next lecture.


