ALPGEN

http://mlm.home.cern.ch/mlm/alpgen M.L. Mangano, M.Moretti, F.Piccinini, R.Pittau, A.Polosa hep-ph/0206293

- Ready-to-use exact LO matrix element calculations for multiparton final states in hadronic collisions
- Parton-level event generation (weighted/unweighted)
 - mass terms and finite width effects
 - spin correlations, also in decays like $t \rightarrow bW(\rightarrow ff')$
 - cross section exact to all orders in I/N_c , colour structure to $O(I/N^2)$
 - EW/QCD interferences available for key processes
- Evolution of the parton level final state through parton shower and hadronization phases, using Herwig or Pythia
- Code available in F77, as well as in a version with some F90 routines (transparent to the user, preferred for CPU performance if compiler available)

Available processes

- WQQ+N jets, Z/Y+QQ+N jets (Q=c,b,t), $N \leq 4$
- W+ N jets, Z/Y+ N jets, $N \leq 6$
- W+c+ N jets, $N \leq 5$
- $\mathbf{Q}\mathbf{Q}$ + N jets (Q=c,b,t), N ≤ 6
- QQQ'Q' + N jets (Q,Q'=b,t), $N \leq 4$
- N jets, $N \leq 6$
- QQ+**Higgs**+ N jets (Q=b,t), $N \leq 4$
- $nW + mZ + pHiggs + N jets, N < n+m+p+N \leq 8, N \leq 3$
- $n Y + N jets, N < n + N \leq 6$

In progress:

- single top production
- Higgs plus multijets, via the ggH vertex

Validation against other codes:

1

		X-sects (pb)			Number of jets								
	W+jets:	$e^-\bar{\nu}_e$ +	n QCD j	jets	0)		1	2	3	4	5	
		A	ALPGEN		39 04	4(6)	1	.013(2)	364(2)	136(1)	53.6(6)	21.6(2)	8
		AM	EGIC++		3905	5(4)	1	.014(3)	370(2)				
		Co	mpHEP		3947.	.4(3)	1()22.4(5)	364.4(4)				
		G	GR@PPA		3906.3	37 (4)	104	46.85 (5)					
Wbb+jets:		HELAC/PHEGAS/JetI		etI	3786(81)		1021(8)		361(4)	157(1)	46(1)		
		MadEvent			3902(5)		1	012(2)	361(1)	135.5(3)	53.6(2)		
X-s	sects (pb)]	Numb	per of j	ets							
$e^-\bar{\nu}_e + b\bar{b}$	$\bar{b} + n$ QCD jets	0	1		2	3	3 4						
ALPGEN		9.34(4)	(4) 9.85(6)		6.82(6)	4.18	(7)	2.39(5)	M	More examples on the			
AMEGIC++		9.42(5)	5) $9.92(10)$						MC ₄ LHC Wshop web page:				
CompHEP		9.415(5)	15(5) 9.91(2						ht	tp://agen	da.cern	.ch/	
HELAC/PHEGAS/JetI		9.88(11)	88(11) 12.68(fullAgenda.php?ida=a0314			031457	
MadEvent		9.32(3)	9.74(1	l) 6	6.80(2)				MANA	HISHIP N	H ING ST		
	X-sects (ml	b)	Number of jets										
jets:	jets		2		3	4		5	6				
	ALPGEN		331.7(3)	22.4	49(7)	4.81(1	L)	1.176(9)	0.330(1)				
	AMEGIC++		330.9(3) 2		2(3)								
ComHEP			334.8(1) 22		79(7)								
HELAC/PHEGAS/		/JetI	331(3)	22.	6(3)	4.7(1)	0.9(1)					
MadEvent		t	329(1)		3(1)	4.86(2	2)			a name			

Validation against other codes: selection of colour flows

To compare the determination of colour flows in different codes we analysed the distributions of the k_T variables. For each colour-connected pair of partons we define

 $k_{ij}^2 = p_{T,i}^2$ if *i* final state and *j* incoming parton

 $k_{ij}^2 = \min(p_{T,i}^2, p_{T,j}^2) \times \Delta R(i, j)$ if i, j outgoing partons

and then order the k_{ij} from the largest (k_{Ti}) to the smallest (k_{Tn}) . In the case of **gg** \rightarrow **ggg**, for example, there will be 5 pairings

Validation against Tevatron W+multijet data

Validation against Tevatron: heavy flavour content of inclusive dijet data

-30% low, consistent with NLO effects

How the code runs

- Well documented in the accompanying text file
- Straightforward compilation of executable for selected process
- Selection of kinematical cuts, PDF set, renormalization scale through input cards
- User routines to implement additional (possibly complex) generation cuts, and initialization of histogramming and analysis routines
- ♀ 3 steps:
 - generation of weighted event sample
 - unweighting
 - processing (shower+hadronization) through Herwig/Pythia

~	√alpgen> tar −zxvf v133.tgz										
∾ 2 4 4 D	/alpgen> Qlib/ Qwork/ Qlib/ Qwork/ OCS/	> ls History.txt Makefile <mark>Njetslib</mark> / <mark>Njetswork</mark> / <mark>QQhlib</mark> /	<mark>QQhwork</mark> / alplib/ ft90V.tar.gz herlib/ phjetlib/	phjetw pylib/ v133.t vbjets vbjets	ork/ gz lib/ work/	wcjet wcjet wjetl wjetw wgqli	lib/ work/ ib/ ork/ b/	wqqwork/ zjetlib/ zjetwork/ zqqlib/ zqqwork/			
~ ~	/alpgen> /alpgen/ /alpgen/	> cd wjetwork 'wjetwork> mak /wjetwork> ./w It X-sectio	ke wjetgen wjetgen < inpu n:	<pre>~/alp 1 w2j 1 70000 2 10 2. 0d0 1 1 1d0 0 ! s 10000 20000 0</pre>	igen/wjet ! imode ! li ! !0 5 ! l ! to ! to ! to ! to ! to ! to ! ! ! ! tort wit ! ! ! !	work> mo abel for initial beam ene tal numb ! ptmin 0d0 ! iqopt, q h: 0=new events/i Nevents 1: chang	re input files state (1 rgy in C er of fin (jet), e ptmin(le fac grid, 1 generat generat generat	=pp, –1=ppbar) M frame and PD nal–state QCD tamax(jet), de pt), etamax(le =previous warm , N(warm–up i ed after warm– t random numbe	F set partons ltaRmin(j-j) pt), deltaRm up grid, 2=p terations) up r seed, 0: k))in(lep-j) et previous gene keep default	miss ration grid
	starting average p avgwgt(pb	generation of 200 h-space eff= 0.70)= 3178.20734+-	0000. events 63166531 32.006895 maxwgt=	2515129.	Out	put f	iles:				
the second of th	unwgt eff sub-proc jproc= 1 jproc= 2 jproc= 3 jproc= 4 jproc= 5 jproc= 6 jproc= 7 jproc= 8 jproc= 10 jproc= 10 jproc= 11 jproc= 12 jproc= 13 jproc= 14 jproc= 15 cumulated avgwgt(pb	<pre>= 0.00120303583 esses: total(pb): 282.7 total(pb): 1233 total(pb): 1242 total(pb): 16.4 total(pb): 46.20 total(pb): 46.50 total(pb): 0.322 total(pb): 0.32</pre>	130733+- 11.328754 .34552+- 18.205184 .03163+- 17.737556 702951+- 6.0569746 178309+- 1.1190430 057652+- 3.4230866 521103+- 2.7910495 3972239+- 0.087283 96208+- 3.81907925 4420863+- 1.663023 7149271+- 1.698812 8351352+- 1.212795 4713529+- 5.732404 0083254+- 13.06611 8722242+- 1.376309 22.5646735	2 5 5 2 5 7 4294 12 66 99 35 18 17	w2j. w2j. w2j. w2j.	grid1 par stat top wgt	-> tro -> inf -> ove -> his -> lis	ained phase Fo on grid, erall run s stograms fo st of gener	-space in max weig tatistics r sample ated weig	itegration pht, etc ;, by subp distribut phted even	n grid process tions nts

- Weighted event sample (run option imode=1):
 - Pre-unweighted during generation using 0.01 maxwgt
 - store to file wgt, random number seeds, and control bits for sanity check
 - Se weight with the second s
- Unweighting (run option imode=2):
 - unwgt based on max wgt (possible to change this for optimization, having looked at the weight distribution)
- generate colour flow information, write events to file
 Shower evolution:
 - Iink Herwig/Pythia to a set of Les Houches Accord interfacing routines, and run the executable on the unweighted event file. Process output as usual

Some examples of performance: (F77, xlf on 1.8GHz Mac G5; F90 version is typically 2-5 times faster) (Z \rightarrow e⁺e⁻)+N jets, p_T>30 GeV, hpl<2.5 N=4: 120' for 10M wgt events, unw eff=5x10⁻⁴ \Rightarrow 5K events = 1fb⁻¹ (σ =5pb) N=5: 300' for 10M wgt events, unw eff=3x10⁻⁴ \Rightarrow 3K events = 2fb⁻¹ (σ =1.4pb) 100fb⁻¹ \Rightarrow 200 hr (N=4) and 150hr (N=5) < 1week on 1 CPU

 $(Z \rightarrow 1^{+}1^{-})+3$ jets, $p_T > 30$ GeV, $-5 < \eta_1 < -2.5$, $2.5 < \eta_2 < 5$, $|\eta_3| < 2.5$ (asymmetric cut option is hard-wired, no effort required to the user) 360' for 100M wgt events, unw eff= $5 \times 10^{-5} \Rightarrow 5$ K events = 12fb⁻¹ (σ =0.4pb) 100fb⁻¹ $\Rightarrow 80$ hr ~ 3 days on 1 CPU

The problem of Leading-log-order double counting **p**_I is of $O(\alpha_s)$ 00000 00000 relative to the LO process instead gives a , contribution to σ_3 -jet of order $\alpha_s \log \frac{\left(p_2 + p_3\right)^2}{E_{T}^2} \approx \alpha_s \left(\log \frac{p_T^{\max}}{p_T^{\min}} + \log \frac{1}{\Delta R}\right) \approx O(\mathbf{I})$

> Double counting, since this configuration is already generated by showering:

A simple prescription to address this problem

- Generate parton-level configurations for a given hard-parton multiplicity N_{part}, with partons constrained by
 - $p_T > p_T \min \Delta R_{jj} > R_{min}$
- Perform the jet showering, using the default Herwig/Pythia algorithms
- Process the showered event (<u>before hadronization</u>) with a cone jet algorithm, defined by
 - E_{T min} and R_{jet}
- Match partons and jets:
 - for each hard parton, select the jet with min $\Delta R_{i-parton}$
 - if $\Delta R_{j-parton} < R_{jet}$ the parton is "matched"
 - a jet can only be matched to a single parton
 - if all partons are matched, keep the event, else discard it
- This prescription defines an **inclusive sample** of N_{iet}=N_{part} jets
- Define an exclusive N-jet sample by requiring that the number of reconstructed showered jets N_{jet} be equal to N_{part}

Few examples:

hard partonparton emitted by the shower

Event matched, N_{jet}=N_{part}=3, keep

collinear double-logarithmic double counting

NOT matched, N_{jet}=N_{part}=3, but N_{match}=2 Throw away soft single-logarithmic double counting

Event matched, N_{jet}>N_{part}, keep for inclusive sample, but throw away for exclusive samples.

- After matching, combine the exclusive event samples to obtain an **inclusive sample containing events with all multiplicities**
- The definition of generation cuts, and of jet cuts after the shower, are required as operative options to generate the sample, but **the physics obtained form the inclusive sample should not depend on them**. The inclusive sample so obtained can be used for any analysis, where possibly different jet definitions will be employed
- The extent to which results depend of the initial generation cuts is a measure of the success of the matching prescription

Some examples: W+multijets

Define parton-level samples using $P_{Tmin} = 10, 20, \text{ or } 30 \text{ GeV} (PT10, PT20, PT30)$ $R_{jj} = 0.4 \text{ or } 0.7 (PT10R07)$ Shower and reconstruct jets using $R_{cone} = 0.4$

Study dependence of inclusive W and inclusive jet spectra on generation parameters

ptW

