Theoretical physics for the LHC, Lecture IV

Michelangelo Mangano TH Division, CERN michelangelo.mangano@cern.ch

Higgs production at the LHC

Several production mechanisms are possible, each of them being more or less important depending on:

- the value of the production rate
- the value of the decay BR to usable channels
- the size of the backgrounds

The relative importance of these aspects is a function of the Higgs mass

The ability to detect more than one production and/or decay channels is crucial to fully establish the properties of the Higgs boson, and to understand whether it behaves as predicted by the Standard Model

While a complete study of the Higgs boson will require data from several accelerators (e+e- linear collider, photon-photon collider, muon collider), the LHC will provide the first important inputs. Depending on m_H , the value of these inputs will vary significantly.

Four main production mechanisms at the LHC:

Gluon-gluon fusion (NNLO):

- Largest rate for all m(H).

- Proportional to the top Yukawa coupling, y_t

- gg initial state

Vector-boson (W or Z) fusion (NLO):

- Second largest, and increasing rate at large m(H). - Proportional to the Higgs EW charge

- mostly ud initial state

W(Z)-strahlung (NNLO):

- Same couplings as in VB fusion
- Different partonic luminosity (uniquely qqbar initial state)

ttH/bbH associate production (NLO):

- Proportional to the heavy quark Yukawa coupling, y_O, dominated by ttH, except in 2-Higgs models, such as SUSY, where b-coupling enhanced by the ratio of the two

Higgs expectations values, $tan\beta^2$

- Same partonic luminosity as in gg-fusion, except for different x-range

Higgs production rates at the LHC

Higgs decays

luminosity is required to thoroughly investigate the Higgs couplings

Search channels:

 $gg \rightarrow H \rightarrow \gamma \gamma$

Acceptable BR only in the mass range $m_{\text{H}}^{<140}$ GeV (O(10⁻³)).

Dominant background: QCD continuum production of $\gamma\gamma$ final states, plus tails in the QCD dijet of γ -jet production, with one or more jets fragmenting into isolated π^{0} , faking a γ .

> Significance: 2.8 to 4.3 σ for 100 fb⁻¹

Search channels: $H \to ZZ^{(*)} \to \ell^+ \ell^- \ell'^+ \ell'^-$

Effective once at least one Z can be on-shell, $m_{H} > 130$ GeV, both in the gluon fusion and vector boson fusion production modes

Main bg: direct QCD ZZ production

Main bg rejection criteria: low rate, sideband interpolation

Search channels: $H \rightarrow WW^{(*)} \rightarrow \ell \nu \ell' \nu'$ Effective once at least one W can be on-shell, $m_{H} > 120$ GeV, both in the gluon fusion and vector boson fusion production modes Main bg: W-pair production from tt decays, and (smaller) from direct WW production Main bg rejection criteria: 1) absence of additional jets (as in top decays) 2) momentum correlation among charged

leptons

3) fwd jets (for VB fusion mode)

Exercise: prove that the matrix element for the signal is maximized when the two charged leptons have small invariant mass

With 5fb⁻¹, and 5% bg systematics:

m _H (GeV)	130	150	170	190
Signal	5	13	22	I4
Bg	3	4	5	7
S/√B	2. I	4.7	6.5	4.2

Search channels: $gg \rightarrow t\bar{t}H \rightarrow t\bar{t}b\bar{b}$

Challenging and complex topology 4 b-jets, 2 jets, 1 lepton $H \rightarrow bb$ $t \rightarrow bqq'$ $t \rightarrow b\ell v$

Main bg: ttbar production, in association with (possibly b) jets

Main bg rejection criteria: 1) multiple b tags 2) peak in m(bb) (try to achieve as good mass resolution as possible)

Signal significance (5 σ) : mH < 120 GeV needs 100 fb⁻¹

Discovery reach for low-mass Higgs at the LEP2 limit (115 GeV, 10fb-1)

	Н→үү	ttH→ttbb	qqН→qqтт
S	130	15	IO
В	4300	45	IO
S/√B	2.0	2.2	2.7

Will require the combination of several, low-significance, channels. Combined significance:

Discovery reach for low-mass Higgs just above the LEP2 limit (130 GeV, 10fb-1)

	Н→үү	qqH→qqWW	qqН→qqтт	H→41
S	120	18	8	5
В	3400	15	6	<1
S/√B	2.0	3.9	2.7	2.8

Combined significance: $\mathbf{6} \, \mathbf{\sigma}$

Light Higgs reach at the LHC

I year of data taking at nominal luminosity should be sufficient for the two experiments to detect a Higgs through most of the expected mass range

High mass region

- Easy discovery using H→ZZ→4 leptons for 200<m_H<600 GeV
- H width larger than detector resolution for $m_{H}>300$ direct measurement of total width!
- Combine several channels m_H>600 GeV:
 - $H \rightarrow ZZ \rightarrow 2$ lept 2 V, 2lept q qbar

• H→WW→lv q qbar

Direct measurement of Higgs mass and width

Direct measurement of Higgs couplings

Different production and decay channels provide measurements of the following combinations of partial decay widths

$$\begin{split} X_{\gamma} &= \frac{\Gamma_{W}\Gamma_{\gamma}}{\Gamma} & from \ qq \to qqH, \ H \to \gamma\gamma, \\ X_{\tau} &= \frac{\Gamma_{W}\Gamma_{\tau}}{\Gamma} & from \ qq \to qqH, \ H \to \tau\tau, \\ X_{W} &= \frac{\Gamma_{g}^{2}\Gamma_{Z}}{\Gamma} & from \ qq \to qqH, \ H \to \tau\tau, \\ X_{W} &= \frac{\Gamma_{g}^{2}}{\Gamma} & from \ qq \to qqH, \ H \to WW^{(*)}, \\ \end{split}$$

 $\ll 1$

Ratios of X or Y quantities factor out not just the partial widths to either W or gluon, but also the overall initial-state parton luminosities and uncertainties on the production cross-sections.

$$y = \frac{\Gamma_b}{\Gamma_{\tau}} = 3c_{QCD}\frac{g_{Hbb}^2}{g_{H\tau\tau}^2} = 3c_{QCD}\frac{m_b^2(m_H)}{m_{\tau}^2}$$

$$\varepsilon = 1 - \left(B(H \to b\bar{b}) + B(H \to \tau\tau) + B(H \to WW^{(*)}) + B(H \to ZZ^{(*)}) + B(H \to gg) + B(H \to \gamma\gamma)\right)$$

$$\tilde{\Gamma}_W = \left(\Gamma_{\tau} + \Gamma_b + \Gamma_W + \Gamma_Z + \Gamma_{\gamma} + \Gamma_g\right)\frac{\Gamma_W}{\Gamma} = (1 - \varepsilon)\Gamma_W$$

Measurement of Higgs couplings

Coupling ratios

Absolute couplings

Rare Higgs decays

$H \rightarrow \mu^+ \mu^-$: SM BR=10⁻⁴, reach for 6000 fb⁻¹

m _H (GeV)	S/√B	δσ×BR/σ×BR
120	7.9	0.13
130	7. I	0.14
140	5.1	0.20
150	2.8	0.36

 $H \rightarrow Z\gamma \rightarrow \mu^+ \mu^- \gamma$: independent determination of HZ coupling. Sensitivity in the range of 3.5 σ with 600fb⁻¹, 11 σ with 600fb⁻¹

MSSM Higgs discovery potential

MSSM specific decays: $A/H \rightarrow \mu\mu, \tau\tau, tt$ $H \rightarrow hh$ $A \rightarrow Zh$ $H^{\pm} \rightarrow \tau\nu$ If SUSY particles

 $h^{O}, H^{O}, A^{O}, H^{\pm}$

light enough: - H/A $\rightarrow \chi_2^{\ o}\chi_2^{\ o} \rightarrow \chi_1^{\ o}\chi_1^{\ o} + 4$ lept's - h produced in cascade decays

For a large fraction of the parameter space with mA<500GeV, more than one Higgs bosons will be visible with the expected luminosity

Higgs particles which can be observed with >5 σ in different areas of m_A-tan β parameter space

 m_{A} (GeV)

Example, h production in cascade decays

Supersymmetry: what, why, where

- Spectrum doubling: one bosonic degree of freedom (dof) of for each fermionic dof, and viceversa
- enhanced relations among and constraints on couplings/masses
- space-time Lorentz symmetry ⇒ particle ↔ antiparticle
- space-time Supersymmetry \Rightarrow particle \leftrightarrow sparticle
- SUSY has a priori fewer parameters than non-SUSY:
 - m(particle)=m(sparticle)
 - couplings(particle)=couplings(sparticle)
 - Higgs selfcoupling (λ) related to weak gauge coupling:

 $\lambda \phi^4 \sim g_W \phi^4$

• All complexity and parameter proliferation of SUSY are just a consequence of SUSY breaking (SSB)!!

- A minimal SUSY extension of the SM, with arbitrary pattern of spontaneous SUSY breaking, has over 100 extra parameters (scalar and gauge-fermion masses, mixings among SUSY partners of quarks and leptons)
- This is not much worse than an arbitrary extension to leptons and hadrons of Fermi's theory of weak interactions, before Feynman, Gell-Mann and Cabibbo, or even before LEP/SLC firmly established the parameters of the SM. One could have needed parameters to describe:
 - non V-A couplings (S, P, T, V+A)
 - non-universal couplings to hadronic currents, and to μ or τ currents
 - more complex Higgs structures
 - different realisations of EWSB
- Therefore parameter proliferation in SUSY is most likely the consequence of our current ignorance of the specific dynamics leading to SUSY breaking.

Benchmark goal for SUSY studies at the LHC:

GET CLUES ON THE MECHANISM OF SUSY BREAKING

The accuracy of SUSY measurements at the LHC should be gauged by the above goal:

is the accuracy sufficient to discriminate among different SSB models?

Supersymmetry breaking: constraints

- No SUSY observed as yet: Susy particles must have masses typically larger than 100 GeV
- Nevertheless they cannot be arbitrarily large, to prevent the artificial fine tuning which justified SUSY in first place: $m_{\tilde{p}} \gg 1 \text{ TeV}$
- Generic Susy breaking (SSB) leads to unacceptable FCNC. Therefore need to require suppressed FCNC (Flavour conservation is to SUSY what GIM has been for the SM):

$$\varepsilon_{K} \sim \left(\frac{100 \ TeV}{m_{\tilde{q}}}\right)^{2} Im \left(\frac{\Delta m_{\tilde{d}_{L}\tilde{s}_{L}}^{2}}{m_{\tilde{d}}^{2}} \frac{\Delta m_{\tilde{d}_{R}\tilde{s}_{R}}^{2}}{m_{\tilde{d}}^{2}}\right) < 2 \cdot 10^{-3}$$
$$\mu \not \to e\gamma \Rightarrow \sin 2\theta_{\tilde{e}\tilde{\mu}} \frac{\Delta m_{\tilde{e}\tilde{\mu}}^{2}}{m_{\tilde{e}}^{2}} < 0.01$$

Supersymmetry breaking models: minimal Supergravity

SUSY breaking at an intermediate scale:

 $M_{SSB} \sim \sqrt{m_W m_{Plank}} \sim 10^{11} \ GeV$

Universal scalar and fermion SSB masses at the Planck scale:

 $m_H = m_0$ $m_{\tilde{V}} = m_{1/2} \quad \forall V = g, \gamma, W, Z$

Implications:

- mass splitting at EW scale induced radiatively ⇒ no FCNC problems
- mass squared for H naturally driven negative by large top Yukawa coupling
- correlation between Higgs and gaugino masses
- correlations between different gaugino masses:

 $m(\tilde{g})/m(\tilde{\chi}) \sim \alpha_s/\alpha_W$

 $m(\tilde{B}) = (5g'^2/3g^2)m(\tilde{W}) \sim 0.5m(\tilde{W})$

Supersymmetry breaking models: gauge-mediated SSB

SUSY breaking in a strongly coupled sector, transferred to the low energy sector only via gauge interactions at an intermediate scale:

m_{SSB} ~ 1-100 TeV

Consequences:

- SSB flavour independent ⇒ no FCNC problems
- Relations among SSB parameters determined by gauge couplings:

 $\frac{m(\tilde{q})}{m(\tilde{\ell})} \sim \frac{\alpha_s}{\alpha_w} \gg 1, \quad \text{unlike SUGRA}$ $\frac{m(\tilde{g})}{m(\tilde{\chi})} \sim \frac{\alpha_s}{\alpha_w}, \quad \text{like SUGRA}$ $m(\tilde{q}) \sim m(\tilde{g}), \quad m(\tilde{\ell}) \sim m(\tilde{\chi})$ $m(\tilde{\chi}_1^{\pm}) \sim m(\chi_2^0)$

• gravitino as Lighest SUSY Particle:

 $\chi^0 \to \tilde{G}\gamma$ or $\tilde{\ell} \to \tilde{G}\ell$ depending on which is the NLSP

In conclusion:

- The exploration of the SUSY spectrum provides invaluable information on the physics at scales much larger than the LHC's.
- Indications of a mSUGRA-like spectrum would set the scale of SSB at 10¹¹ GeV, and would provide indication of no interesting phenomena up to that scale
- Indications of a GMSB-like spectrum would indicate the existence of new phenomena at a scale of the order of 10-100-TeV
- The most valuable information will come from the comparison of
 - gaugino masses (gluino vs. charginos vs. neutralinos)
 - scalar masses (SU(2) doublet (L-type) vs singlet (R-type) scalars, squarks vs sleptons, 1st generation vs 2nd and 3rd)
 - of particular interest is the value of the stop mass, because of its connection with the Higgs mass

Production of SUSY particles

- Discrete quantum number, R=1 for "normal" particles, R=-1 for SUSY states. If R conserved:
 - pair production.
 - lightest SUSY particle is stable (=> Dark matter candidate)
- Strongly interacting (squarks -- e.g. stops, gluinos):

Weakly interacting (photino, W-ino, Z-ino, higgsino => charginos/neutralinos)

 $m_{\tilde{\chi}} \sim 150 \text{ GeV} \Rightarrow \sigma \sim 1 \text{pb}^{-1}$

Decays of SUSY particles

 χ^{\pm}

 χ^0_2

W±

 $\chi^0_1 = LSP$

weakly interacting:

 strongly interacting: for massive states spectacular multi-body chain decays, possibly including EW sparticles, enhancing their production rate. Very difficult, but possible, to disentangle the full spectroscopy!

Z

SUSY searches at the LHC

Low-mass matching with Tevatron's discovery reach: trigger thresholds!

Discovery reach for mSUGRA models, with various luminosity and CM energy options

 $\chi_2^0 \rightarrow \tilde{\ell}^{\pm} \ell^{\mp} \rightarrow \chi_1^0 \ell^+ \ell^-$

 $\max(m(\ell^+\ell^-)) = m(\chi_2) \sqrt{\frac{m^2(\chi_2) - m^2(\tilde{l})}{m^2(\chi_2)}} \sqrt{\frac{m^2(\tilde{\ell}) - m^2(\chi_1)}{m^2(\ell)}}$

Examples of measurement accuracies for a specific model, in ATLAS:

Measurement	Expected	valueError (%)
	(GeV)	300 fb^{-1}
m_0	100 GeV	±3
$m_{1/2}$	300 GeV	±1.3
tanβ	2.1	± 2
m_h	93	± 0.2
$m_{\ell^+\ell^-}$ end-poin	t109	± 0.2
$m_{\tilde{\ell}_{P}}$	157	±0.3
$m_{\tilde{\ell}_I}$	240	±1
$m_{\tilde{q}_I}$	690	±1
$m_{\tilde{q}_R}$	660	±1.5
m _g	770	±1.5
$m_{\tilde{t}_1}$	490	± 10

Summary of LHC physics potential

- Quark substructure:
 - probed in high-transverse momentum, large-angle quark-quark scattering; measure the deviation from point-like rate. Push the "size" of the quark down by more than one order of magnitude w.r.t. today
- New gauge interactions, e.g. right-handed W bosons, extra U(1)'s (as present in string theories), etc.
 - probed in pp -> l+l- or jet-jet, searching for peaks in the invariantmass spectrum. Can test presence of interactions with EW-like strength up to 5-6 TeV
- Discover the Higgs boson over the domain up to 1 TeV, and determine to 10-20% the value of several of its couplings
- Detect several Higgses, if SUSY, over a good fraction of parameter space

- Measure the anomalous couplings of gauge bosons, and test for possible deviations from EW dynamics at scales up to several TeV.
- Provide first key measurements of SUSY parameters:
 - m(gluino), m(chargino) -> test possible GUT relations, adding to evidence of GUT from gauge coupling unification
- Assess whether the neutralino accounts for DM
- Explore in unprecedented detail the physics of b-flavour: rare BR's to 1/10⁹, deviations from unitarity of the CKM mixing matrix. Potential to tet the presence of virtual SUSY particles in loop-mediated decays, such as B_s → μ⁺μ⁻, b → sγ
 Ready to detect the unexpected!

Conclusions

- Many independent probes of the frontier of physics exist or are being built:
 - Cosmology: WMAP, Planck, SN, Digital Sloan, Dark Matter searches ...
 - Astrophysics: Gravitational wave detectors, VHE cosmic ray arrays, ...
 - Gravity: measurements of deviations from Newton's law
 - Low-enerrgy precision tests: g-2, K physics, B-physics, Atomic Parity Violation, etc
 - and more.....
- Indirect observation of possibly revolutionary indications of new physics, however, are no substitute for the direct observation of the particles responsible for this new physics:
 - which particle is associated to DM?
 - what is the field-theory origin of the inflaton? of the quintessence?
 - what is giving g-2 different than expected?
- The next generation of accelerators will be extremely expensive (time and \$\$), and input from the LHC results will be crucial to define the future directions of the field.
- We unfortunately still don't know of alternatives to the quest for the most basic laws of Nature other than HEP collisions.
- LHC is a crucial step forward in this quest.