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QCD Feynman rules

P lél‘] a, p b7V _lg]’N
pP—m+ie p*+ie

(Feynman gauge)

igNiY

A{é} gfalaza3 M1} (pl 1l p2)ﬂ3 _|_gﬂ2ﬂ3 (p2 jal p3)ﬂ1 _|_g]/l3]41 (p3 71 pl)ﬂz]
dp

3

(211182 3
W _ig2 [fasz fa3a4X <gﬂ1ﬂ3gﬂ2ﬂ4 Al gﬂlmgﬂzm) Hi. (2 AL 3) i (2 Litl 4)}

U W4



Some results for the SU(3) colour algebra
Ao SU(N.) matrix in the fundamental representation,
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Exercises
* Verify the properties of the SU(N) algebra given in the

previous pages

* Prove that the sums of the following sets of diagrams are
gauge invariant, namely the amplitude remains invariant if
we replace the polarization vector of any gluon, € , with € +

p ,p being the gluon momentum:
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Running of the

! 0.18
coupling constant
- dao
def & & — Ol 0.16
Y 4n dlog(Q?) Plax) 3
7
483 0.14
MO
1
and 04(Q) = bolog(02/A2) 0.12
At 2-loops:
153 —19n
B= boog — byor | b= Y 2 o
and
yilg i 1 b loglog(Q?/A?)
T bolog(Q*/A%) | by logQP/A?

¢ JADE

B LEP (preliminary)

.M\?ﬁhﬁ\

—— QCDNNLO
tatal t*rri:llri X ﬁ.ﬂ_ 98/16
uncorrelated error
co v b bv v b bvvva b P baa
25 50 75 100 125 150 175 200
Eyy [GEV]

Current World Average (Bethke 2002): os(Mz) = 0.118£0.003




Factorization Theorem
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* sum over all initial state
histories leading, at the
scale Q, to:
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= transition from partonic final
state to the hadronic observable
(hadronization, fragm. function,
jet definition, etc)
* Sum over all histories with X
in them




Universality of parton densities and
factorization, a naive proof

Exchange of hard gluons among

quarks inside the proton is qu glq q>0 / i @ 1 L
: : 6 2
suppressed by powers of (m p/Q)2 ¢ 4 C
T= I/mp

Typical time-scale of interactions T \

binding the proton is therefore of

O(I/mp) (in a frame in which the

proton has energy E, T=y/m i E/m pz) ffﬁa ffqa

If a hard probe (Q>>mp) hits the proton,

on a time scale =1/Q), there is no time for
quarks to negotiate a coherent response



As a result, to study inclusive processes at large Q it is sufficient to
consider the interactions between the external probe and a single parton:

1) calculable in perturbative QCD (pQCD)

2) do not affect f(x): Xpefore = Xafter

q>Q Q

|
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%, This gluon cannot be
reabsorbed because
the quark is gone

g<Q D X cfore * Xafrer = affect f)!

2) for g=1 GeV not calculable in pQCD

However, since T(q=1GeV)>>1/Q, the emission of low-virtuality gluons will take
place long before the hard collision, and therefore cannot depend on the detailed
nature of the hard probe. While it is not calculable in pQCD, f(q<<Q) can be
measured using a reference probe, and used elsewhere =

Universality of f(x)



Q dependence of

s <
parton densities 1
,gefm}
*in g o< iR Nin *in
P

e

waﬁ'

The larger is Q, the more gluons will not have time to be reabsorbed

PDE’s deiend on ii'
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1 0 1
f(x,0Q) = flx,n) + /x dxin f (Xin, pt) /ﬂ dq” /0 dyP(y,q°) 8(x — yxin)

f(x,Q) should be independent of the intermediate scale considered:
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and therefore (Altarelli-Parisi equation):
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More in general, one should consider additional processes which lead to the

evolution of partons at high Q (t=logQ?):
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Examples of PDFs and their evolution
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Example: charm in the proton

de(x, Lirlg
C(;tQ) i ;X_TE/X —yg()’aQ)qu(g)
Assuming a typical behaviour of the gluon density:
g(x,0) ~A/x
we get:
de(x,Q) 1 dy PHB e A
7 %/ T g(x/y,0) / dy —y)] = I

and therefore:

2

C()C, Q) _log(Qz) g(x, Q)
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Corrections to this simple formula will arise due to the Q dependence of g(x) and of ts
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PDF uncertainties

Green bands represent the
convolution of theoretical and
experimental systematics in the

determination of PDFs
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Proton PDFs known to
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with uncertainties getting
smaller at larger Q



Nuclear modifications
* Interactions among various nucleons may

change the parton densities (shadowing, i
Cronin effect, etc) L
* The evolution at high-Q, however, should & o
be decoupled from the nuclear N Arudd
environment. Nuclear PDFs for hard < o8
processes can therefore be obtained from
AP evolution of PDFs fit at low Q.
X O.
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Fig. 22: The W+, W~ and 2" rapidity distributions in pp., pPb and Pbp collisions at 5.5 TeV/nucleon evaluated at ¢} = My,
The solid and dashed curves show the results without and with shadowing respectively in Pbp collisions while the dotted and

dot-dashed curves give the results without and with shadowing for pPb collisions. The dot-dot-dot-dashed curve is the pp result.
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Fig. 1: Parton-xy distributions for charm production in the full pseudorapidity range (left) and in the central region (right). The

cross section per nucleon is given.

Examples of x ranges
probed by charm
production at the LHC
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Fig. 2: Parton-z distributions for charm production in the forward pseudorapidity range 2.5 < 1 < 4. The cross section per

nucleon is eiven.



Drell-Yan processes:

W — v
7N

qg

* Very clean probe of the initial state: no interaction with the plasma!
* Very well understood theoretically: 0(W,Z) known up to NNLO (2-

loops)
* Excellent experimental monitor of energy-scale for jets, when
produced at large Et:
> NNSU s VAYAVAY
Y Y
gluon jet quark jet
e B-R-R-N IS >
#(events)/month barrel+
detected by CMS: | barrel endcap
Z(— ptp=)+jet, B p4 > 100 GeV 30 45

Z(— ptp)+jet, BX' p4 > 50 GeV 180 300




L.O Cross-section calculation
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Some useful relations and definitions

1 EW_|_p€V 0

Rapidity: y = 5 log A Pseudorapidity: 1M = —log(tan 5)
W

where:
Pr

tan® = ~~ and pr = \/pi+p;
p

Exercise: prove that for a massless particle rapidity=pseudorapidity:

Exercise: using T = % — XX, and
EW i (xl ‘|‘x2)Ebeam =y = l lOgﬁ
p%)[/ Hi (Xl —)Cz) Eheam 2 X2

prove the following relations:
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Study the function TL(T)

Assume, for example, that f(x)~ gt 0<d<1
o 1 A 1 |
Then: L(t) = | 7)@(;)“6 S log( )

5
S S
, _ 0
ity = = v <m%,> o8 <mw>

Therefore the W cross-section grows at least
logarithmically with the hadronic CM energy. This is a
typical behavior of cross-sections for production of fixed-
mass objects in hadronic collisions, contrary to the case of
e+e- collisions, where cross-sections tend to decrease with

CM energy:.



Photon plus jet production
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qg initial state: ! qq initial state: !
I8 DT R sy Il RN

* Asin the case of Z+jet, provides a good calibration for the absolute
experimental determination of the energy of the recoil jet. Rates are
larger than for Z’s:

~v+jet, BT > 100 GeV 1.6x 10 3.0% 103

* o(x)>>q(x), therefore the first process dominates by at least a factor
10 throughout the phase-space. Potentially a good observable to
constrain g(x)! Affected however by large higher-order,
bremstrahlung-like corrections:

T T T T
HiHe) ocezq, therefore up-type quarks are enhanced. In particular, the

fraction of charm contribution is large, and a good fraction of
recoling jets is charm-like.



