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    Search for
SUperSYmmetry  

SUSY
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SUPERSYMMETRY 
     

Symmetry  between fermions (matter) 
and bosons (forces)

   for each particle p with spin s,
   there exists a SUSY partner 
   with spin s-1/2. 

p~

Ex. :       q (s=1/2)   →            (s=0)          squarks

                  g  (s=1)      →            (s=1/2)       gluino

q~

g~

Motivations:
•    Unification fermions-bosons and matter-forces is attractive
•    Solves problems of SM, e.g. divergence of Higgs mass :

-

f

f

H
f
~

f
~

Fermion and boson loops cancel, provided
m   ≤ TeV. f

~
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•   Measured coupling constants unify at GUT scale
     in SUSY but not in SM. 

SM

SUSY

• Provides candidate for cold dark matter (LSP)
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•  Does not contradict predictions of  SM at low
    energy →  not ruled out by present experiments.
    Predicts a light Higgs (mh < 130 GeV)

•  Ingredient of string theories that many consider
    best candidate for unified theory including 
    gravity

However: no experimental evidence for
 SUSY as yet 

       Either SUSY does not exist  
          
                     OR

mSUSY  large (>> 100 GeV) → not accessible
to present machines

LHC should say “final word”  about
SUSY if  mSUSY ≤ a few TeV
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Drawback : many new particles predicted

Here : Minimal Supersymmetric extension of 
           the Standard Model (MSSM) which
           has minimal particle content

MSSM particle spectrum :

5 Higgs bosons : h, H, A, H±

Masses not known. However charginos/neutralinos
are usually  lighter than squarks/sleptons/gluinos.
Present limits :  m          >    90-100 GeV    LEP

                          m          >    250 GeV  Tevatron Run 1
                                                       400 GeV  Tevatron Run 2

quarks   →   squarks 
leptons  →    sleptons
W±            →    winos
H±             →    charged higgsino
γ           →     photino
Z          →     zino
h, H     →     neutral higgsino
g          →     gluino

etc. ,d
~
 ,~u

etc. ,~ , ~ ,~e
→ χ ±

1, χ ±
2

2 charginos

→ χ 0
1,2,3,4

4 neutralinos

g~

g~ ,~q

± ,
~
l
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SUSY phenomenology

There is a multiplicative quantum number:

R-parity         Rp=
+ 1       SM particles

- 1        SUSY particles

which is conserved in most popular models
(considered here).

Consequences:

• SUSY particles are produced in pairs
• Lightest Supersymmetric Particle (LSP)
  is stable.
  LSP is also weakly interacting (for
   cosmological reasons, candidate for cold dark matter) 

   → LSP behaves like a ν → escapes detection
   → ET

miss     (typical SUSY signature)

    Most models :      LSP ≡ χ0
1
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Production of SUSY particles at LHC

• Squarks and gluinos produced via strong processes
  → large cross-section

m       ~ 1 TeV      σ ∼ 1 pb → 104 events per year

                                                    produced at low L         
g~ ,~q

• Charginos, neutralinos, sleptons produced via
  electroweak processes → much smaller rate

Ex.: 

Ex. σ ≈ pb  mχ ≈ 150 GeV

          are dominant SUSY processes at LHC
            if kinematically accessible 

gggqqq ~~ ,~~ ,~~

q~
q
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Decays of SUSY particles : some examples

Ex. Cascade decays
involving many
leptons and /or
jets + missing
energy (from LSP)

χ± W±

χ0
1= LSP

χ0
1

Z

χ0
2

l

l
~

Z

χ0
1

χ0
2

χ0
1

Z

q

q

χ0
2

q~
g~

 heavier → more complicated decay chainsgq ~ ,~
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However : whatever the model is, we know that   

   decays through cascades favoured

⇒  many high-pT jets/leptons/W/Z in
      the final state + ET

miss

Exact decay chains depend on model parameters
(particle masses, etc.)

at LHC is easy to extract SUSY signal 
from SM background

g~ ,~q are  heavy ( m > 250 GeV)
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Example: if  Nature had chosen the following
point in the parameter space:  

Requiring : ET
miss  > 300 GeV

                   5 jets pT > 150, 150, 100, 100, 90 GeV

In one year at
low L:
NS = 11600  events
NB = 560  events

    S ~ 500 !!

m     ≈ 900 GeV

m     ≈ 600 GeV

m χ±   ≈ 150 GeV

m χ0   ≈ 80 GeV

q~

g~
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With similar analysis, discover or exclude
          with masses up to 1.5-2 TeV in one
year at high luminosity (L = 1034 cm-2 s-1)

→ if  SUSY exists, it will be easy and fast to discover at  LHC 
up to m ~ 2.5 TeV thanks to large x-section and clean signature. 

Many precision measurements of sparticle masses possible. 

g~ ,~q
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> 700  theoretical papers over last 2.5 years

    Search for
Extra-dimensions  
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Arkani-Hamed, Dimopoulos, Dvali (ADD)

If   gravity  propagates
in  4 + n  dimensions, 
a  gravity scale MS  1 TeV is possible
→ hierarchy problem solved

MPl
2 ≈ MS

n+2 Rn

n, R  = number and size 
of extra-dimensions

•  If   MS ≈ 1 TeV : 
   n=1    R ≈ 1013 m    →     excluded by macroscopic gravity
   n=2    R ≈ 0.7 mm   →     limit of small- scale gravity  experiments
   ….   
    n=7    R ≈ 1 Fm   

Extra-dimensions are compactified over R < mm  

•  Gravitons  in Extra-dimensions  get  quantised mass:

×=  ... 1,k      
R

k
 ~ m k 

3n eV 400  m e.g.      
R

1
 ~ m =∪∆∆

→  continuous tower
      of massive gravitons
(Kaluza  Klein  excitations)
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•  Only one scale in particle physics : EW scale
•  Can test geometry of universe and 
   quantum gravity in the lab

Due  to  the large  number of   Gkk ,  the coupling
SM  particles - Gravitons becomes of  EW strength
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•   cosmology, astrophysics
•    test of  Newton force down  to  R ≤  mm 
•    colliders 

Constraints and
searches  from:

Supernova  SN1987A  cooling  by  ν  emission 
(IBM, Superkamiokande) → bounds on cooling
via Gkk emission:
             MS  > 31 (2.7) TeV    n=2 (3)    
   
Distorsion of cosmic diffuse γ radiation spectrum
(COMPTEL) due to Gkk → γγ:

 MS  > 100 (5) TeV    n=2 (3)     

  large
uncertainties
 but  n=2 
disfavoured

 Note : ~ no  constraints  from precision measurements:
            -- contributions of  Gkk  loops to EW observables
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     Searches at  LEP
 (only available Collider results  today )

                  n = 2      n = 3    n = 4    n = 5    n = 6
 
ALEPH             1.28      0.97      0.78     0.66     0.57
DELPHI            1.38                   0.84                 0.58
L3                       1.45       1.09         0.87      0.72       0.61
OPAL (√s≤189)   1.09      0.86      0.71    0.60      0.53

MS= 0.75
n = 2

Lower limits
 on  MS  

e-
γ

γ

e+
G

n

2n 
SM

 s
 ~ +

Nkk increases with √s

mk  increases with MS, n

→  signature  is   γ + E
Direct graviton
production e.g.
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Searches at LHC

G

qq

g

MS = gravity scale
  n  = number of extra-dimensions

2
S M

1
  +∪

n

→  topology  is 
 jet(s) + missing ET

Direct Graviton production:

n

MS reach
(TeV)
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ADD models

If   nothing  found  below 10  TeV,  ADD theories 
will  lose  most  of  their  appeal  

Tevatron Run II  2 fb-1

TESLA 500 fb-1

LHC  100 fb-1

Today :  LEP, Tevatron, HERAR ≈ 1 mm

R ≈ 100 pm

95% C.L reach on  MS  (TeV) from 
direct  (n=3) and  indirect searches 

Deviations from 
SM cross-sections
from virtual G exchange
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    CONCLUSIONS

LHC : most difficult and ambitious high-energy
physics project  ever realised (human and 
financial resources, technical challenges, 
complexity, ….)

Very broad and crucial physics goals:
 understand the origin of masses,
 look for physics beyond the SM, 
 precision measurements of  known particles.

 In particular: can say the final word about 
   --  SM Higgs mechanism
   --  low-E SUSY      

  

    
     It will most likely modify our 
     understanding of  Nature     
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E. Fermi, preparatory notes for a talk on
“What can we learn with High Energy Accelerators  ? ”
 given to the American Physical Society, NY, Jan. 29th 1954
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End of 
lectures


