

Precise measurements of: m_W, m_{top}

Motivation:

W mass and top mass are fundamental parameters of the Standard Model:

since G_F , $_{EM}$, sin $_W$ are known with high precision, precise measurements of m_{top} and m_W constrain radiative corrections and Higgs mass (weakly because of logarithmic dependence)

So far : W mass measured at LEP2 and Tevatron top mass measured at the Tevatron

Fabiola Gianotti, Physics at LHC, Pisa, April 2002

LEP1 ('89-'95) $: \forall s \approx m_Z \rightarrow 17$ million Z recorded \rightarrow precise Z measurements LEP2 ('96-2000) $: \forall s \rightarrow 209$ GeV \rightarrow WW production, m_W , search for Higgs and new particles

Fabiola Gianotti, Physics at LHC, Pisa, April 2002

Fabiola Gianotti, Physics at LHC, Pisa, April 2002

$$m_{\rm W} = \frac{\pi \alpha_{\rm EM}}{\sqrt{2} G_{\rm F}} = \frac{1}{\sin \theta_{\rm W} \sqrt{1 - r}}$$

 m_W (from LEP2 + Tevatron) = 80.451 ± 0.033 GeV

 m_{top} (from Tevatron) = 174.3 ± 5.1 GeV

<u>Year 2007</u>:

 $m_W = 25 \text{ MeV} (0.3 \%)$ from LEP/Tevatron

m_{top} 2.5 GeV (1.5 %) from Tevatron

Can LHC do better ?

EXAMPLE 5 : thanks to large statistics

Measurement of W mass

Method used at hadron colliders different from e⁺e⁻ colliders

- W jet jet : cannot be extracted from QCD jet-jet production cannot be used
- W : since + X, too many undetected neutrinos cannot be used

only W e and W μ decays are used to measure m_W at hadron colliders

W production at LHC :

- ~ 50 times larger statistics than at Tevatron
- ~ 6000 times larger statistics than WW at LEP

Since \vec{p}_L^{ν} not known (only \vec{p}_T^{ν} can be measured through E_T^{miss}), measure transverse mass, i.e. invariant mass of ℓ in plane perpendicular to the beam :

$$m_{T}^{W} = \sqrt{p_{T}^{1} p_{T}^{v} (1 - \cos \varphi_{lv})}$$

$$E_{T}^{miss}$$

W e events (data) from CDF experiment at the Tevatron

Title:

USER6:[DONC.WPSPLUS]000496RB1.TMS;1 Creator: DECpresent V1.0 Preview: This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostScript printer, but not to other types of printers.

m_T^W distribution is sensitive to m_W

fit experimental distributions with Monte Carlo samples with different values of m_W find m_W which best fits data

Uncertainties on m_W

Statistical error negligible dominated by systematics (mainly Monte Carlo reliability to reproduce real life):

- <u>detector performance</u>: lepton energy resolution, lepton energy scale, recoil modeling, etc.
- <u>physics</u>: p_T^W, _W, _W, structures functions, background, etc.

Constrained *in situ* by using mainly $Z \quad \ell \ell \text{ decays } (1 \text{ Hz at low L per } \ell) :$ e.g. calibrate the electron energy scale in the EM calorimeter requiring $m_{ee} = m_Z$

 $\frac{\text{Dominant error}}{\text{Normalize}} (today at Tevatron, also at LHC): knowledge of lepton energy scale of the detector: if lepton energy scale wrong by 1%, then measured m_w wrong by 1% to achieve$

 m_W 20 MeV (~ 0.2‰) need to know lepton scale to 0.2 ‰ most serious experimental challenge Calibration of detector energy scale

Example : EM calorimeter

• if $E_{\text{measured}} = 100.000 \text{ GeV}$ calorimeter is perfectly calibrated

- if $E_{\text{measured}} = 99$, 101 GeV energy scale known to 1%
- to measure m_w to ~ 20 MeV need to know energy scale to 0.2 %, i.e. if $E_{electron} = 100 \text{ GeV}$ then 99.98 GeV $< E_{measured} < 100.02 \text{ GeV}$

one of most serious experimental challenges

Calibration strategy:

• detectors equipped with calibration systems which inject known pulses:

check that all cells give same response: if not correct

- calorimeter modules calibrated with test beams of known energy set the energy scale
- inside LHC detectors: calorimeter sits behind inner detector electrons lose energy in material of inner detector need a final calibration "*in situ*" by using physics samples:

Expected precision on m_w at LHC

Source of uncertainty	m _W	
Statistical error	<< 2 MeV	
Physics uncertainties (p_T^W, W, W, W)	~ 15 MeV	
Detector performance (energy resolution, lepton identification, etc,)	< 10 MeV	
Energy scale	15 MeV	
Total (per experiment, per channel)	~ 25 MeV	

Combining both channels ($e \ , \mu$) and both experiments (ATLAS, CMS), <u>m_W 15 MeV</u> should be achieved. However: very difficult measurement

Measurement of m_{top}

• Discovered in '94 at Tevatron precise measurements of mass, couplings, etc. just started

Top production at LHC:

Top decays:

BR 100% in SM

- <u>hadronic channel</u>: both W jj
 6 jet final states. BR 50 % but
 large QCD multijet background.
- -- <u>leptonic channel</u>: both W ℓ 2 jets + 2ℓ + E_T^{miss} final states. BR 10 %. Little kinematic constraints to reconstruct mass.
- -- <u>semileptonic channel</u>: one W jj, one W ℓ 4 jets + 1ℓ + E_T^{miss} final states. BR 40 %. If $\ell = e, \mu$: gold-plated channel for mass measurement at hadron colliders.

In all cases two jets are b-jets displaced vertices in the inner detector Example from CDF data :

Selection of $t\bar{t}$ bW bW b ℓ bjj

Expected precision on m_{top} at LHC

Source of uncertainty	m _{top}
Statistical error	<< 100 MeV
Physics uncertainties (background, FSR, ISR, fragmentation, etc.)	~ 1.3 GeV
Jet scale (b-jets, light-quark jets)	~ 0.8 GeV
Total (per experiment, per channel)	~ 1.5 GeV

Uncertainty dominated by the knowledge of physics and not of detector.

Searches for the Standard Model Higgs boson

Fabiola Gianotti, Physics at LHC, Pisa, April 2002

Main handles to reject background : b-tagging , presence of Z, m_H is large, etc...

Fabiola Gianotti, Physics at LHC, Pisa, April 2002

Fabiola Gianotti, Physics at LHC, Pisa, April 2002

Higgs production at LHC

- $m_{\rm H} < 120 \text{ GeV: H}$ $b\overline{b}$ dominates
- 130 GeV < m_{H} < 2 m_{Z} : H WW^(*), ZZ^(*) dominate
- $m_{\rm H} > 2 m_{\rm Z} : 1/3 {\rm H} {\rm ZZ}$
 - 2/3 H WW
- important rare decays : H

N. B.: $_{\rm H} \sim m_{\rm H}^{-3} = _{\rm H} \sim {\rm MeV} (100 {\rm ~GeV}) m_{\rm H} \sim 100 (600) {\rm ~GeV}$

Search strategy

Fully hadronic final states dominate but cannot be extracted from large QCD background look for final states with leptons and photons (despite smaller BR).

Main channels:

- Low mass region ($m_H < 150 \text{ GeV}$):
 - -- H $b\bar{b}$: BR ~ 100% 20 pb

however: huge QCD background ($N_S/N_B < 10^{-5}$)

can only be used with additional leptons: W H $\ell \ b\overline{b}, \ t\overline{t}$ H $\ell \ X \ b\overline{b}$ associated production (1 pb)

-- H : BR ~ 10^{-3} 50 fb however: clean channel (N_S/N_B 10⁻²) • Intermediate mass region (120 GeV m_H 2 m_Z):

-- H WW* *l l* -- H ZZ* *ll ll*

~ only two channels which can be extracted from background

• <u>High mass region ($m_H > 2 m_Z$):</u>

-- H ZZ $\ell\ell \ell\ell$

gold-plated channel (~ no background) !

This mass region is disfavoured by EW data (SM internal consistency if Higgs is so heavy ?)

$\frac{\text{Only two examples discussed here :}}{H} \\ H \\ 4\ell$

- Select events with two photons in the detector with $p_T \sim 50 \text{ GeV}$
- Measure energy and direction of each photon
- Measure invariant mass of photon pair

$$m_{\gamma\gamma} = \sqrt{(E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2}$$

• Plot distribution of m Higgs should appear as a peak at m_H

Most challenging channel for LHC electromagnetic calorimeters

Main backgrounds:

• <u>production</u>: irreducible (i.e. same final state as signal)

e.g. :

• <u>jet + jet jet production</u> where one/two jets fake photons: reducible

e.g. :

How can one fight these backgrounds?

- <u>Reducible jet, jet-jet</u>: need excellent /jet separation (in particular / ⁰ separation) to reject jets faking photons
 - R_{jet} 10³ needed for 80%

ATLAS and CMS have calorimeters with good granularity to separate single from jets or from $_{0}$

Simulation of ATLAS calorimeter

With this performance : (jet + jet-jet) 30% small

• <u>Irreducible</u> : cannot be reduced. But signal can be extracted from background if mass resolution good enough

S
$$\frac{1}{\sqrt{\sigma_m}}$$
 H < 10 MeV for $m_H \sim 100 \text{ GeV}$

$$m_{\gamma\gamma}^{2} = (E_{1} + E_{2})^{2} - (\vec{p}_{1} + \vec{p}_{2})^{2} = 2E_{1}E_{2}(1 - \cos\theta_{12})$$

ATLAS EM calorimeter:

• homogeneous crystal calorimeter

σ (E)	2-5%
E	\sqrt{E}

 no longitudinal segmentation vertex measured using secondary tracks from spectator partons difficult at high L often pick up the wrong vertex

$$_{\rm m}$$
 0.7 GeV $m_{\rm H} \sim 100 \, {\rm GeV}$ 20%

CMS crystal calorimeter

Expected performance

ATLAS : 100 fb⁻¹

m _H (GeV)	100	120	150
Significance ATLAS, 100 fb ⁻¹	4.4	6.5	4.3

CMS : significance is ~ 10% better thanks to better EM calorimeter resolution

- "Gold-plated" channel for Higgs discovery at LHC
- Select events with 4 high-p_T leptons (excluded): $e^+e^-e^+e^-$, $\mu^+\mu^-\mu^+\mu^-$, $e^+e^-\mu^+\mu^-$
- Require at least one lepton pair consistent with Z mass
- Plot 4ℓ invariant mass distribution :

$$m^2 = E_i^2 - (\vec{p}_i)^2$$

Higgs signal should appear as peak in the mass distribution

Backgrounds:

-- irreducible : pp ZZ (*) 4ℓ m (H 4ℓ) 1-1.5 GeV ATLAS, CMS For m_H > 300 GeV H > m -- reducible (~ 100 fb) : tī 41 + X t, \bar{t} ψ b ℓ Zbb 41 + X

Both rejected by asking:

- -- $m_{\ell\ell} \sim m_Z$
- -- leptons are isolated
- leptons come from interaction vertex
 (leptons from B produced at 1 mm from vertex)

g

Expected performance

- Significance : 3-25 (depending on mass) for 30 fb⁻¹
- Observation possible up to $m_H = 700 \text{ GeV}$
- For larger masses:

- $_{\rm H} > 100 \, {\rm GeV}$

 $H \rightarrow ZZ \rightarrow 4\ell^{\pm}$

in CMS

Summary of Standard Model Higgs

Expected significance for one experiment over mass range 1 TeV

- LHC can discover SM Higgs over full mass region (S > 5) after 2 years of operation
- in most regions more than one channel is available
- detector performance (coverage, energy/momentum resolution, particle identification, etc.) crucial in most cases
- mass can be measured to 1% for $m_{\rm H} < 600 \, {\rm GeV}$

However, it will take time to operate, understand, calibrateATLAS and CMSHiggs physics will not be done before2007-2008 givenpresent machine schedule

What about Tevatron ?

Tevatron schedule :

- -- Run 2A : March 2001-end 2003 : ~ 2 fb⁻¹ /expt.
- -- Run 2B : middle 2004 ? : ~ 15 fb⁻¹ /expt by end 2007

• For $m_{\rm H} \sim 115$ GeV Tevatron needs (optimistic analysis):

- ~ 2 fb^{-1} for 95% C.L. exclusion end 2003 ?
- ~ 5 fb⁻¹ for 3 observation end 2004 ?
- ~ 15 fb⁻¹ for 5 discovery end 2007 ?
- Discovery possible up to $m_{\rm H} \sim 120 \text{ GeV}$
- 95% C.L. exclusion possible up to $m_{H} \sim 185 \text{ GeV}$

Ē

Both machines (Tevatron, LHC) could achieve 5 discovery if m_H 115 GeV. Who will find it first ?

LHC	versi	us TEVATRON
Higgs cross-section ~10-100 h	nigher	S/B ~ 5 higher
Conservative estimates (cross-sections, cut analyis, et m _H =115 GeV 10 fb ⁻¹ S/ B 4.7 7 using Tevatron approx	c.) 4.7 oach	Less conservative predictions (e.g. Neural Network analysis) m _H =115 GeV 10 fb ⁻¹ S/ B 5.3
Will take lot of time to unders Detectors and physics	stand	Has lot of time to understand detectors and physics
Ready in 2007 ?		15 fb ⁻¹ by 2007 ? Need $3 * \overline{p}$
"This does not necessarily means that this is the H mass !" $\int^{\mathbf{x}(t)} \sin^{t} \mathbf{Q}_{b} dz \int ds (s - h^{t}_{b}) \mathbf{F}(e^{t} \mathbf{e}^{-\gamma \mathbf{u}}_{\mathbf{H}}) \frac{h^{\mathbf{x}(t)}}{\mathbf{Q}^{\mathbf{x}}}$ $\int^{\mathbf{x}(t)} \frac{1}{\mathbf{E}^{t}} \sin^{t} \mathbf{Q}_{b} dz \int ds (s - h^{t}_{b}) \mathbf{F}(e^{t} \mathbf{e}^{-\gamma \mathbf{u}}_{\mathbf{H}}) \frac{h^{\mathbf{x}(t)}}{\mathbf{Q}^{\mathbf{x}}}$ $- \overline{\mathbf{E}} e^{\mathbf{x}(\mathbf{Q}^{t} \mathbf{T}_{a}^{\mathbf{x}} - \mathbf{i} \mathbf{k} \mathbf{u}^{b}} \frac{h^{\mathbf{x}(t)}}{\mathbf{q}^{\mathbf{x}}} - \frac{h^{t}_{b}}{\mathbf{q}^{\mathbf{x}}} e^{t \mathbf{u}} \frac{h^{\mathbf{x}(t)}}{\mathbf{q}^{\mathbf{x}}}$ $- \frac{1}{\mathbf{d}} \frac{d}{dt} \mathbf{u}_{a}^{2} g(\mathbf{v}_{t}, \mathbf{x}_{s}) f^{2}) g(\mathbf{v}_{t}, \mathbf{x}_{s}) f^{2}} g(\mathbf{v}_{t}, \mathbf{x}_{s}) f^{2}) g(\mathbf{v}_{t}, \mathbf{x}_{s}) f^{2}} \frac{d}{dt} \mathbf{u}_{a}^{2} g(\mathbf{v}_{t}, \mathbf{x}_{s}) f^{2}) g(\mathbf{v}_{t}, \mathbf{x}_{s}) f^{2}} \frac{d}{dt} \mathbf{u}_{a}^{2} g(\mathbf{v}_{t}, \mathbf{v}_{s}) f^{2} g(\mathbf{v}_{t}, \mathbf{v}_{s}) f^{2}} \frac{d}{dt} \mathbf{u}_{a}^{2} g(\mathbf{v}_{t}, \mathbf{v}_{s}) f^{2} g(\mathbf{v}_{t$		

Let's assume the Higgs is found; what do we do now ? Want to measure the Higgs properties, e.g.

 $m_{\rm H}$ can be measured to 0.1% using precise calorimeter and muon systems of ATLAS and CMS

Summary of Part 2

- Examples of precision physics at LHC: W mass can be measured to ~15 MeV, top mass to ~ 1.5 GeV
- Standard Model Higgs boson can be discovered over the full mass region up to 1 TeV in ~ 1 year of operation.
- Excellent detector performance required: Higgs searches have driven the LHC detector design.
- Main channels : H , H 4ℓ
- If SM Higgs not found before / at LHC, then alternative methods for electroweak symmetry breaking will have to be found

If the Higgs field distorted the vacuum we should be able to see it !"

