

Fabiola Gianotti (CERN)

Pisa, April 22-24 2002

Outline

- Part 1 : Introduction What is the LHC ? Why the LHC ? Experimental challenges The ATLAS and CMS experiments Overview of the physics programme
- <u>Part 2 : Precise measurements and Higgs searches</u> Measurements of the W and top masses Higgs searches
- Part 3 : Physics beyond the Standard Model Motivations
 Searches for SUSY
 Searches for Extra-dimensions

At LEP, Tevatron and LHC

• pp machine (mainly):

 \sqrt{s} = 14 TeV 7 times higher than present highest energy machine (Tevatron/Fermilab: 2 TeV)

search for new massive particles up to $m \sim 5 \text{ TeV}$

$$L \quad \frac{N_1 \quad N_2}{\delta x \ \delta y} = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$$

~ 10² larger than LEP2, Tevatron

search for rare processes with small (N = L)

- under construction, ready 2007
- will be installed in the existing LEP tunnel
- two phases:

Four large-scale experiments:

ATLAS	general-purpose pp
CMS	experiments
LHCb	pp experiment dedicated to b-quark physics and CP- violation. $L=10^{32}$ cm ⁻² s ⁻¹
ALICE	heavy-ion experiment (Pb-Pb collisions) at 5.5 TeV/nucleon s 1000 TeV Quark-gluon plasma studies. $L=10^{27}$ cm ⁻² s ⁻¹

Here : ATLAS and CMS

A few machine parameters

	-		<u> </u>	1
Energy	E	[TeV]	7.0	
Dipole field	B	[T]	8.4	
Luminosity	L	$[\mathrm{cm}^{-2} \mathrm{s}^{-1}]$	10 ³⁴	
Beam-beam parameter	ξ		0.0034	
Total beam-beam tune spread			0.01	
Injection energy	E_{i}	[GeV]	450	
Circulating current/beam	I _{beam}	[A]	0.53	
Number of bunches	k _b		2835	
Harmonic number	$h_{\rm RF}$		35640	
Bunch spacing	TB	[ns]	24.95	
Particles per bunch	nb		$1.05 \ 10^{11}$	
Stored beam energy	E_{s}	[MJ]	334	
Normalized transverse emittance $(\beta \gamma) \sigma^2 / \beta$	ε_{n}	[µm.rad]	3.75	
	ļ			
Collisions				
β -value at I.P.	β^*	[m]	0.5	
r.m.s. beam radius at I.P.	σ^*	$[\mu m]$	16	
r.m.s. divergence at I.P.	σ'^*	$[\mu rad]$	32	
Luminosity per bunch collision	Lb	$[cm^{-2}]$	$3.14 \ 10^{26}$	
Crossing angle	ϕ	$[\mu rad]$	200	
Number of events per crossing	$n_{\rm c}$		19	
Beam lifetime	$\tau_{\rm beam}$	[h]	22	
Luminosity lifetime	τ_L	[h]	10	

Limiting factor for s : bending power needed to fit ring in 27 km circumference LEP tunnel:

$$p (TeV) = 0.3 B(T) R(km)$$

$$\uparrow$$

$$= 7 TeV = 4.3 km$$

LHC : B=8.4 T : ~ 1300 superconducting dipoles working at 1.9 K (biggest cryogenic system in the world)

LHC is unprecedented machine in terms of:

- Energy
- Luminosity
- Cost : 4000 MCHF (machine + experiments)
- Size/complexity of experiments :
 - ~ 1.3-2 times bigger than present collider experiments
 - ~ 10 times more complex
- Human resources : > 4000 physicists in the experiments

Motivations for LHC

Motivation 1 : Origin of particle masses

Standard Model of electroweak interactions verified with precision $10^{-3} - 10^{-4}$ by LEP measurements at s m_Z and Tevatron at s = 1.8 TeV.

> discovery of top quark in '94, m_{top} 174 GeV

However: origin of particle masses not known. Ex.: m = 0 $m_{W,Z}$ 100 GeV \longrightarrow ? SM : Higgs mechanism gives mass to particles (Electroweak Symmetry Breaking)

 $m_{\rm H} < 1$ TeV from theory For $m_{\rm H}$ 1 TeV $_{\rm H} > m_{\rm H}$ and WW scattering violates unitarity

However:

- -- Higgs not found yet: only missing (but essential) piece of SM
- -- present limit : $m_H > 114.1 \text{ GeV}$ (from LEP)
- -- "hint" at LEP for m_H 115 GeV
- -- Tevatron may go beyond (depending on L) need a machine to discover/exclude Higgs from 120 GeV to 1 TeV

Motivation 2 : Is SM the "ultimate theory" ?

- Higgs mechanism is weakest part of the SM:
 - -- "ad hoc" mechanism, little physical justification
 - -- due to radiative corrections

: energy scale up to which SM is valid (can be very large).

radiative corrections can be very large ("unnatural") and Higgs mass can diverge unless "fine-tuned" cancellations "bad behaviour" of the theory

• Hints that forces could unify at $E \sim 10^{16} \text{ GeV}$

$$\begin{array}{c} 1 = & 1/128 \\ 2 = & WEAK & 0.03 \\ 2 = & s & 0.12 \end{array} \right\} \quad s \sim 100 \\ GeV$$

Running of couplings proven experimentally

GUT: for $E > 10^{16} \text{ GeV}$ physics become simple (one force with strength _G)

- SM is probably low-energy approximation of a more general theory
- Need a high-energy machine to look for manifestations of this theory
- e.g. Supersymmetry : m_{SUSY} ~ TeV Many other theories predict New Physics at the TeV scale

Motivation 3 : Many other open questions

- Are quarks and leptons really elementary ?
- Why 3 fermion families ?
- Are there additional families of (heavy) quarks and leptons ?
- Are there additional gauge bosons ?
- What is the origin of matter-antimatter asymmetry in the universe ?
- Can quarks and gluons be deconfined in a quark-gluon plasma as in early stage of universe ?
- etc.

Motivation 4 : The most fascinating one ... Unexpected physics ?

Motivation 5 : Precise measurements Two ways to find new physics:

- -- discover new particles/phenomena
- -- measure properties of known particles as precisely as possible find deviations from SM

LHC: known particles (W, Z, b, top, ...) produced with enormous rates thanks to high energy (high) and L (high rate)

Ex.: 5×10^8 W ℓ 5×10^7 Z $\ell \ell$ 10^7 $t\bar{t}$ pairs 10^{12} $b\bar{b}$ pairs

per year at low L

many precision measurements possible
thanks to large statistics (stat. error ~ 1/ N)
error dominated by systematics

Note : measurements of Z parameters performed at LEP and SLD, however precision can be improved for : -- W physics -- Triple Gauge Couplings WW , WWZ -- b-quark physics -- top-quark physics

Phenomenology of pp collisions

Transverse momentum (in the plane perpendicular to the beam) :

 $p_{\rm T} = p \sin p$

Rapidity:

$$\begin{array}{ll} \eta = -\log (tg \frac{\theta}{2}) & = 90^{\circ} & = 0 \\ & = 10^{\circ} & 2.4 \\ & = 170^{\circ} & -2.4 \end{array}$$

Total inelastic cross-section: tot (pp) = 70 mb s = 14 TeVRate = $\frac{\text{n. events}}{\text{second}} = L_x$ tot (pp) = 10⁹ interactions/s $10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

These include two classes of interactions.

Class 1:

Most interactions due to collisions at <u>large</u> <u>distance</u> between incoming protons where protons interact as " a whole " <u>small momentum</u> <u>transfer</u> ($p \hbar / x$) particles in final state have large longitudinal momentum but small transverse momentum (scattering at large angle is small)

 $< p_{\rm T} > 500 \,{\rm MeV}$ of charged particles in final state $\frac{dN}{d\eta} = 7$ charged particles uniformly distributed in

Most energy escapes down the beam pipe.

These are called minimum-bias events (" soft " events). They are the large majority but are not very interesting.

Class 2:

Monochromatic proton beam can be seen as beam of quarks and gluons with a wide band of energy. Occasionally hard scattering (" head on") between constituents of incoming protons occurs.

p momentum of incoming protons = 7 TeV

Interactions at <u>small distance</u> <u>large</u> <u>momentum transfer</u> massive particles and/or particles at large angle are produced.

These are interesting physics events but they are rare.

Unlike at e+e- colliders

• effective centre-of-mass energy $\sqrt{\hat{s}}$ smaller than s of colliding beams:

$$\vec{p}_{a} = x_{a} \vec{p}_{A}$$

$$\vec{p}_{b} = x_{b} \vec{p}_{B}$$

$$p_{A} = p_{B} = 7 \text{ TeV } \sqrt{\hat{s}} = \sqrt{x_{a} x_{b} s}$$

$$if x_{a} x_{b}$$

$$if x_{a} x_{b}$$

$$to produce m 100 \text{ GeV } x \sim 0.01$$

$$to produce m 5 \text{ TeV } x \sim 0.35$$

• cross-section :

Two main difficulties

• <u>Typical of LHC</u>:

At each interaction on average 25 minimum-bias events are produced. These overlap with interesting (high p_T) physics events, giving rise to so-called

~1000 charged particles produced over | | < 2.5 at each crossing.

However $\langle p_T \rangle$ 500 MeV (particles from minimum-bias).

applying p_T cut allows extraction of interesting particles

Simulation of CMS inner detector

Pile-up is one of the most serious experimental difficulty at LHC

Large impact on detector design:

• LHC detectors must have fast response, otherwise integrate over many bunch crossings too large pile-up

Typical response time : 20-50 ns integrate over 1-2 bunch crossings pile-up of 25-50 minimum bias very challenging readout electronics

- LHC detectors must be highly granular to minimise probability that pile-up particles be in the same detector element as interesting object (e.g. from H decays) large number of electronic channels high cost
- LHC detectors must be radiation resistant: high flux of particles from pp collisions high radiation environment E.g. in forward calorimeters:

up to 10^{17} n / cm^2 in 10 years of LHC operation up to 10^7 Gy

Note : 1 Gy = unit of absorbed energy = 1 Joule/Kg

Radiation damage :

- -- decreases like d^2 from the beam detectors nearest to beam pipe are more affected
- -- need also radiation hard electronics (military-type technology)
- -- need quality control for <u>every piece</u> of material
- -- detector + electronics must survive 10 years of operation

• <u>Common to all hadron colliders:</u> high-p_T events dominated by QCD jet production:

- Strong production large cross-section
- Many diagrams contribute: qq qq, qg qg, gg gg, etc.
- Called " QCD background "

Most interesting processes are <u>rare processes</u>:

- involve heavy particles
- have weak cross-sections (e.g. W production)

Proton - (anti) proton cross-section

To extract signal over QCD jet background must look at decays to photons and leptons pay a prize in branching ratio

Ex. BR (W jet jet) 70% BR (W ℓ) 30%

ATLAS and CMS detectors

Don' t know how New Physics will manifest detectors must be able to detect as many particles and signatures as possible:

e, μ , , , , jets, b-quarks,

"multi-purpose" experiments.

- Momentum / charge of tracks and secondary vertices (e.g. from b-quark decays) are measured in central tracker. Excellent momentum and position resolution required.
- Energy and position of electrons and photons measured in electromagnetic calorimeters. Excellent resolution and particle identification required.
- Energy and position of hadrons and jets measured mainly in hadronic calorimeters. Good coverage and granularity are required.
- Muons identified and momentum measured in external muon spectrometer (+ central tracker). Excellent resolution over ~ 5 GeV < p_T < ~ TeV required.
- Neutrinos "detected and measured" through measurement of missing transverse energy E_T^{miss} . Calorimeter coverage over | |<5 needed.

Detection and measurement of neutrinos

- Neutrinos traverse the detector without interacting not detected directly
- Can be detected and measured asking:

$$\mathbf{E}_{\mathrm{f}}, \vec{\mathbf{P}}_{\mathrm{f}} = \mathbf{E}_{\mathrm{i}}, \vec{\mathbf{P}}_{\mathrm{i}}$$

total energy, momentum reconstructed in final state

total energy, momentum of initial state

-- e^+e^- colliders: $E_i = s$, $\vec{P}_i = 0$ if a neutrino produced, then $E_f < E_i$ (missing energy) and \vec{P}_f ? 0 $\vec{P}_v = -\vec{P}_f$ $E_v = |\vec{P}_v|$

-- hadron colliders: energy and momentum of initial state (energy and momentum of interacting partons) not known. However: transverse momentum $\vec{P}_{T_i} = 0$

if a neutrino produced \vec{P}_{Tf} ? 0 (missing transverse momentum) and $|\vec{P}_{Ty}| = |\vec{P}_{Tf}| = E_T^{miss}$

ATLAS

A Toroidal Lhc ApparatuS

Length : 40 m Radius : 10 m Weight : 7000 tons Electronics channels : 10⁸

CMS

Compact Muon Solenoid

Length : 20 m Radius : 7 m Weight : 14000 tons Electronics channels : 10⁸

	ATLAS	CMS
MAGNET (S)	Air-core toroids + solenoid in inner cavity Calorimeters outside field 4 magnets	Solenoid Calorimeters inside field 1 magnet
TRACKER	Si pixels+ strips TRD \rightarrow particle identification B=2T $\sigma/p_T \sim 5 \times 10^4 p_T \oplus 0.01$	Si pixels + strips No particle identification B=4T $\sigma/p_T \sim 1.5x10^4 p_T \oplus 0.005$
EM CALO	Pb-liquid argon 6/E ~ 10%/\E uniform longitudinal segmentation	PbWO ₄ crystals $\sigma/E \sim 2-5\%/\sqrt{E}$ no longitudinal segm.
HAD CALO	Fe-scint. + Cu-liquid argon (10 λ) $\sigma/E \sim 50\%/\sqrt{E} \oplus 0.03$	Cu-scint. (> 5.8 λ +catcher) σ/E ~ 70%/√E ⊕ 0.05
MUON	Air $\rightarrow \sigma/p_T \sim 7 \%$ at 1 TeV standalone	Fe $\rightarrow \sigma/p_T \sim 5\%$ at 1 TeV combining with tracker

Fabiola Gianotti, Physics at LHC, Pisa, April 2002

ATLAS EM calo module 1

Assembly of CMS

Fabiola Gianotti, Physics at LHC

Examples of performance requirements

 Excellent energy resolution of EM calorimeters for e/ and of the tracking devices for µ in order to extract a signal over the backgrounds.

• Excellent particle identification capability: e.g. e/jet , /jet separation

d () < 10 mm in calorimeter QCD jets can mimic photons. Rare cases, however:

$$\frac{\sigma_{jj}}{\sigma (H \gamma \gamma)} \sim 10^8 \qquad \text{m} \sim 100 \text{ GeV}$$

need detector (calorimeter) with fine granularity to separate overlapping photons from single photons

ATLAS EM calorimeter : 4 mm strips in first compartment

Title: MiSzpójanotti/dco/ana/ntuple/paw.metafile Creator: HIGZ Version 12/1/0 Preview: This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostScript printer, but not to other types of printers.

• <u>Trigger</u>: much more difficult than at e⁺e⁻ machines

Interaction rate: ~ 10⁹ events/second Can record ~ 100 events/second (event size ~1 MB)

trigger rejection ~ 10^7

Trigger decisionµslarger than interactionrate of 25 ns

store massive amount of data in pipelines while trigger performs calculations

The LHC physics programme

- Search for Standard Model Higgs boson over $\sim 120 < m_{\rm H} < 1000$ GeV.
- Search for Supersymmetry and other physics beyond the SM (q/l compositness, leptoquarks, W'/Z', heavy q/l, unpredicted ?) up to masses of ~ 5 TeV
- Precise measurements :
 - -- W mass
 - -- WW, WWZ Triple Gauge Couplings
 - -- top mass, couplings and decay properties
 - -- Higgs mass, spin, couplings (if Higgs found)
 - -- B-physics: CP violation, rare decays, B⁰ oscillations (ATLAS, CMS, LHCb)

-- QCD jet cross-section and

-- etc.

 Study of phase transition at high density from hadronic matter to plasma of deconfined quarks and gluons. Transition plasma hadronic matter happened in universe ~ 10⁻⁵ s after Big Bang (ALICE)

Keyword: large event statistics

Expected event rates in ATLAS/CMS for representative (known and new) physics processes at low luminosity (L=10³³ cm⁻² s⁻¹)

Process	Events/s	Events/year	Other machines
W e	15	108	10 ⁴ LEP / 10 ⁷ Tev.
Z ee	1.5	107	10 ⁷ LEP
tī	0.8	107	10 ⁵ Tevatron
$b\overline{b}$	10 ⁵	1012	10 ⁸ Belle/BaBar
$\widetilde{g}\widetilde{g}$ (m=1 TeV)	0.001	104	
H (m=0.8 TeV)	0.001	104	
QCD jets $p_T > 200 \text{ GeV}$	10 ²	109	107

High L : statistics 10 times larger

LHC is a B-factory, top factory, W/Z factory Higgs factory, SUSY factory, etc.

Physics rates are the strongest point in favour of LHC. What about weaknesses ?

w.r.t. <u>e+e-</u>machines:

- -- backgrounds (QCD) are much larger
- -- trigger is much more difficult
- -- centre-of-mass energy is not known less kinematic constraints in

final state

- -- underlying event and pile-up make final state complex
- -- etc. ...

w.r.t. Tevatron:

- -- pile-up due to higher L
- -- QCD processes grow faster with energy than electroweak processes e.g. e/jet ~ 10^{-3} Tevatron $p_T > 20$ GeV e/jet ~ 10^{-5} LHC

How can one claim a discovery ?

Suppose a new narrow particle X is produced:

Signal significance :

N_B error on number of background events

S > 5: signal is larger than 5 times error on background. Probability that background fluctuates up by more than 5 : 10⁻⁷ discovery

Two critical parameters to maximise S:

• <u>detector resolution</u>: if _____ increases by e.g. two, then need to enlarge peak region by two.

N_B increases by ~ 2 (assuming background flat)

N_S unchanged

$$S = N_S / N_B$$

decreases by 2

detector with better resolution has larger probability to find a signal

Note: only valid if $x \ll m$. If new particle is broad, then detector resolution is not relevant.

• integrated luminosity :

$$\begin{bmatrix} N_{S} \sim L \\ N_{B} \sim L \end{bmatrix} \begin{bmatrix} S \sim L \end{bmatrix}$$

Summary of Part1

• LHC: pp machine (also Pb-Pb) s = 14 TeV $L = 10^{33} \cdot 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ Start-up : 2007

• Four large-scale experiments:

ATLAS, CMS	pp multi-purpose
LHCb	pp B-physics
ALICE	Pb-Pb

• Very broad physics programme thanks to high energy and luminosity. Mass reach : 5 TeV

Few examples in next lecture ...

Very difficult environment:

 pile-up : ~ 25 soft events produced at each crossing. Overlap with interesting high-p_T events.
 large background from QCD processes (jet production): typical of hadron colliders

Very challenging, highly-performing and expensive detectors:

- -- radiation hard
- -- fast
- -- granular
- -- excellent energy resolution and particle identification capability
- -- complicated trigger

