Hadron Collider Physics

- Experimental Overview - Part III -

Arnulf Quadt

ROCHESTER

Part III

Search for the Higgs

Search for New Phenomena

Higgs Searches

Search for the Standard Model Higgs Boson

- Search strategy a function of production and decay channel ...
- b-tagging a crucial tool

10.-13.09.2004 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

ROCHESTER Page 4

m" > 115.3 GeV

exp.

Search for the Standard Model Higgs Boson

SM Higgs Search: WH $\rightarrow I_V bb$ (M_h < 140 GeV)

DØ uses sample of W(ev)+2b tagged jets ⇒ require exactly 2 jets to suppress top background 2.5 events expected and 2 events observed

> CDF uses e & µ channels ⇒ require at least 1 jet to be b-tagged

for $m_h = 115$ GeV: σ (WH) * BR(H \rightarrow bb) < 12.4 pb⁻¹ at 95% CL

future improvements:
extended b-tagging acceptance, efficiency
additional kinematic variables
better m_{bb} resolution
add vvbb channel

SM Higgs Search: $H \rightarrow WW \rightarrow II_{V}$ (M_h > 140 GeV)

search strategy:
 → 2 high p₁ leptons + missing E₁
 → WW comes from spin 0 Higgs: charged leptons prefer to point in the same direction

Current Limits on SM Higgs Search

both CDF and DØ set 95% CL limits on SM Higgs production

... limits already exceeding Run I results ...

Excluded cross section times Branching Ratio at 95% C.L.

 σ (WH) * BR(H \rightarrow bb) < 12.4 pb-1 at 95% CL

Tevatron SM Higgs Hunting Outlook

reaching interesting sensitivity with 2 fb⁻¹

Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

ROCHESTER Page 9

8.57

4.41

2009

Tevatron SM Higgs Sensitivity Study 2003

Process	SHW 1999	Xsec '03	Ratio	Analysis '03	Ratio	comment
HZ (115 GeV)	3.15	3.82	1.22	2.86	0.9	1
HW (115 GeV)	2.39	2.78	1.16	2.08	0.8	7
Zbb	4.34	1.73	0.4	1.99	0.4	6 from CDF data
Wbb	9.45	3.59	0.38	4.34	0.4	6 from CDF data
ZZ	1.82	2.36	1.3	2.93	1.6	1 PYTHIA 6.125 + K=1.34
WZ	1.45	1.79	1.45	1.84	1.2	7 PYTHIA 6.125 + K=1.34
tt	3	6.53	2.18	5.48	1.8	3 average of NLO calc.
qtb	0.31	0.8	2.62	0.68	2.2	2 NLO calc.
tb	4.7	0.49	0.1	0.35	0.0	8 NLO calc
QCD	25.06	17.3	0.69	11.16	0.4	5 from current study
total bgd	50.11	34.59		28.77	ン	
Significance	0.78	1.12		0.92		

nr. events for 1 fb⁻¹

- assumes mostly running with Run-IIB silicon tracker
- assumes Jet-Mass resolution of 10%,
 - SHW 1999 CAL reso. assumption met in Run-IIA
- improvement mainly from sophisticated analysis techniques
- ~50% less luminosity needed compared to 1999 with updated Xsec
- ~28% less luminosity needed with realistic trigger efficiency,

QCD ... Bgd from data compared to SHW '99

SM Higgs Production at the LHC

Higgs Decays at LHC


```
egin{aligned} &\mathbf{m_H} < 2\,\mathbf{m_Z}: \ &\mathbf{H} 
ightarrow \gamma\gamma \ &\mathbf{t}\overline{\mathbf{t}}\mathbf{H} 
ightarrow \mathbf{l}
u \mathrm{b}\mathbf{b} + \mathrm{X} \ &\mathbf{H} 
ightarrow \mathbf{ZZ}^* 
ightarrow 4\mathbf{l} \ &\mathbf{H} 
ightarrow \mathbf{ZZ}^* 
ightarrow 4\mathbf{l} \ &\mathbf{H} 
ightarrow \mathbf{WW}^* 
ightarrow \mathbf{l}
u \mathbf{
```

```
\begin{array}{l} \mathbf{m}_{\mathrm{H}} > 2 \ \mathbf{m}_{\mathrm{Z}}:\\ \text{main channel is } \mathrm{H} \to \mathrm{ZZ} \to \mathrm{4l}\\ \mathbf{\tilde{gold plated'}}\\ \mathrm{H} \to \mathrm{ZZ} \to \mathrm{ll} \nu \nu\\ \mathrm{H} \to \mathrm{ZZ} \to \mathrm{ll} j \\ \mathrm{H} \to \mathrm{WW} \to \mathrm{l} \nu j j \end{array}
```

detector performance and calibration crucial b-tag, I/γ , particle ID, E-resolution E_{T}^{mis} resolution, forward jet tagging ...

fully hadronic decays dominate, BUT cannot be separated from dominant background ... $\sigma(H \rightarrow bb) \sim 20 \text{ pb}, \sigma(bb) \sim 500 \text{ }\mu\text{b}$

 $H \rightarrow \gamma\gamma$ (m ≤ 150 GeV)

most demanding channel for EM-cal

ttH → ttbb (m_h ≤130 GeV)

backgrounds:

- 4b final state combinatorics
- Wjjjjjj, WWbbjj
- tijj

$ m m_{H}\sim 115GeV$	$10{ m fb}^{-1}$	per experiment
-----------------------	------------------	----------------

	${ m H} ightarrow \gamma \gamma$	$t\overline{t}H \rightarrow t\overline{t}b\overline{b}$
S	300	30
В	7800	90
S/B	0.04	0.33
S/\sqrt{B}	3.4	3.2

LHC Discovery Potential

LHC Discovery Potential

- SM Higgs can be discovered with 10 fb⁻¹ at 5 significance
- cliscovery easier at high masses
- full mass range could be excluded with 1 month of data

• BUT

ATLAS and CMS need ~10 fb-1 of good and understood data (1 year ?)

Weak-Boson Fusion

- additional discovery potential
 - @ mh=120 GeV =4pb (20% of hiof)
- possible to find invisible Higgs
- retemptor to themeturepern to this this
 - Higgs coupling to bosons and termions, total width ...

signature:

- 2 high-p, forward jets
- low central jet activity
- isolated central leptons (depending on channel)

Higgs Mass at LHC

MSSM Higgs	$\Delta\mathrm{m/m}(\%),$ 300 fb $^{-1}$
$ m h, A, H ightarrow \gamma \gamma$	0.1 - 0.4
${ m H} ightarrow 4{ m l}$	0.1 - 0.4
$ m H/A ightarrow \mu \mu$	0.1 - 1.5
${ m h} ightarrow { m b} { m ar b}$	1 - 2
${ m H} ightarrow{ m hh} ightarrow{ m b}ar{ m b}\gamma\gamma$	1 - 2
$\mathrm{A} \to \mathrm{Zh} \to \mathrm{b} \overline{\mathrm{b}} \mathrm{ll}$	1 - 2
${ m H/A} ightarrow au au$	1 - 10

clominant uncertainties:
γ/l energy scale (0.1 % assumed)
goal 0.02% (Z → II)

similar studies for σ * Br rate \diamond can differentiate SM and MSSM

Higgs Coupling at LHC

10.-13.09.2004 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

Higgs Width at LHC

direct:

• for $m_h > 200$ GeV obtaind Higgs width from mass distribution (H \rightarrow ZZ \rightarrow 4I) (in SM $\Gamma_H > \Gamma_{Detector}$)

Search for MSSM Higgs at the Tevatron

g

Two Higgs Doublets $\mathcal{H}_1, \mathcal{H}_2$ and 5 physical states

2 CP-even neutral Higgses 1 CP-odd neutral Higgs 2 charged Higgses	h^0, H^0 A^0 H^{\pm}	$m_{\rm h} < m_{\rm H}$
Free parameters:	$\tan \beta = v_2/v_1$	(VEV ratio)
	α	(mixing angle of h H)
	ц 11	Higgs mass parameter
	A o	common trilinear
	210	Higgs-sfermion couplin
tree level:	$m_{\rm b} < m_7 < m_{11}$	ringga-sici mon coupin
rad corrected:	$m_h < 130 \text{ GeV}$ D	$(I \rightarrow h \overline{h}) = 00$
nucconcolcu.	mn i roo dev B	$r(\phi \rightarrow DD) \sim 90$
, b	9	, b
a l	The seal	
ALLER	/ ^b	
ā/		b
A.	T	4
0	u gra	1 - 1 -
> 120	DØ Bun II Br	eliminary
a ~ 131 pb ⁻	be num r	
ă 100	•	Data
		Bkad
≝ 80 UIL†I.		
ja i ji ji ji		= 120 Gev
<u>ш́ 60</u> - ТІ - Ц		
i ſ 4	L I	
40 +		
	յել	
	╉ <mark>╋╵</mark> ╉╻	
20-	tu₁ t t t t	
20	┟╘╵╷ ┠╋╌ ╋╌ ┿┯┿ _{┯┿┿╅╺┷┙}	
20	┟┶╵ ┠╃╌╅ ╺┿┯┿ _{┯┿┿┿┷╺┿┿} ╌╌╷╴╴╴╴╴┍╴╺┶┯┯╼┿	
20 0 100		400 500

MSSM predicts larger Higgs cross setions for some values of parameter space than SM

Using NLO cross section calculations and assuming no difference between A and h/H DØ performs search for MSSM Higgs • multi-jet high ET sample • 3 or more jets b-tagged

10.-13.09.2004 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

Search for MSSM Higgs at the Tevatron

CDF searches for pp → h/A + X
with A decaying into ττ pair
~8% branching ratio at high tanβ
lower backgrounds then bb pairs
no access seen over backgrounds

	$ au_h au_e$	$ au_h au_\mu$	Combined
$Z \to \tau \tau$	132.3 ± 17.1	104.1 ± 13.3	236.4 ± 29.5
$Z \rightarrow l l$	1.8 ± 0.2	4.9 ± 0.4	6.7 ± 0.6
$t\bar{t}, VV$	0.7 ± 0.1	0.8 ± 0.1	1.5 ± 0.1
$jet \rightarrow \tau$	12.0 ± 3.6	7.0 ± 2.1	19.0 ± 5.7
Total predicted	146.8 ± 17.5	116.8 ± 13.5	263.6 ± 30.1
Data	133	103	236

Searches for New Phenomena

Motivation

	Maggurament	Fit	omeas ofiturameas	
	Weasurement	rn.	0 1 2 3	
$\Delta \alpha_{\text{train}}^{(5)}(m_2)$	0.02761 ± 0.00036	0.02767		
m _z [GeV]	91.1875 ± 0.0021	91.1875	- K.	
Γ _z [GeV]	2.4952 ± 0.0023	2.4960	-	
σ_{had}^0 [nb]	41.540 ± 0.037	41.478	a land	
R	20.767 ± 0.025	20.742		
A ^{0,1} fb	0.01714 ± 0.00095	0.01636		
A,(P,)	0.1465 ± 0.0032	0.1477	-	
Rb	0.21638 ± 0.00066	0.21579		
R _c	0.1720 ± 0.0030	0.1723		
A ^{0,b}	0.0997 ± 0.0016	0.1036	-	
A ^{0,c}	0.0706 ± 0.0035	0.0740		
Ab	0.925 ± 0.020	0.935	· • · · · · · · · · · · · · · · · · · ·	
Ac	0.670 ± 0.026	0.668		
A(SLD)	0.1513 ± 0.0021	0.1477		
sin ² 0 ^{lopt} (Q _{ib})	0.2324 ± 0.0012	0.2314		
m _w [GeV]	80.426 ± 0.034	80.385	ACCOMPANY 10	
Fw [GeV]	2.139 ± 0.069	2.093		
m, [GeV]	174.3 ± 5.1	174.3		
sin ² 0 _w (vN)	0.2277 ± 0.0016	0.2229		
Q _w (Cs)	-72.84 ± 0.46	-72.90	•	

Standard Model healthier than ever ... BUT ...

Structure, generations, ...

- excited fermions
- Ieptoquarks
- anomalous single top, rare decays
- Scales, hierarchy
 - large extra space dimensions
 - Super-Symmetry (RP-Violation)

Excited Fermions (f^* \rightarrow fV, q^* \rightarrow qg)

SM observation:

- 3 distinct fermion generations
- hierarchy of their masses
- similarity in electric charge and weak properties

could be compositeness / substructure ("preons") consequence: excited states with $m(f^*) \ge 100$ GeV

Phenomenology (Hagiwara et al.):

f, f', (f_s)relative coupling strength to $SU(2)_L$, $U(1)_Y$, (and $SU(3)_C$)compositeness mass scaleXsecdepends on m_{μ} and f/

Ι*, ν*	W, Ζ, γ	HERA, LEP
q*	W, Ζ, γ , g	HERA, LEP, TEVATRON

ROCHESTER Page 25

... many f* searches ...

1st Example ($e^* \rightarrow eV, v^* \rightarrow vV$)

10.-13.09.2004 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

 2^{nd} Example (q* \rightarrow qV, q* \rightarrow qg)

from di-jet mass spectrum for f=f'=f_s=1 and =M_{q*}:

M_{q*} > 760 GeV (CDF,II) 775 GeV (DØ,I) 940 GeV 2 fb⁻¹

... quark substructure regime of hadron colliders ...

3rd Example: Leptoquarks

10.-13.09.2004 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

Leptoquark Searches at the Tevatron-II

CDF-II $M_{LQ} > 230 \text{ GeV in eeqq } (72 \text{ pb}^{-1})$ $M_{LQ} > 107 \text{ GeV in } \vee \vee qq (76 \text{ pb}^{-1})$ DØ-II $M_{LQ} > 179 \text{ GeV in eeqq } (41 \text{ pb}^{-1})$ $M_{LQ} > 157 \text{ GeV in } \mu\mu qq (41 \text{ pb}^{-1})$... reach up to $M_{LQ} \sim 250-325 \text{ GeV } (2 \text{ fb}^{-1})$...

Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

High-P, Leptons at HERA

FCNC single top production, at LEP (~10⁻⁹ fb), HERA in SM small

• anomalous contribution in SUSY, exotic quarks, multi-Higgs doublets, ...

topology at HERA: high p, positron / muon + large missing E,

Anomalous Single-Top Production

🛝 🖄 10.-13.09.2004 🛛 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

Task: solve hierarchy problem,

i.e. why is $M_{pl}/m_{ew} \sim 10^{17}$ GeV soooo large ?

<u>A proposed solution:</u>

- gravity and gauge interactions unify at weak scale M_s
- Solution of the observed weakness of gravity at distances ≥1mm due to n ≥ 2 (6 in string theories) new spatial dimensions
- gravitons move freely in all dimensions
- SM fields localized to 4-dim. space-time
- curled-up/compactified dimensions of radius R
 Kaluza-Klein towers of periodic energy/mass levels
- r R gravit. potential from Gauss law in (n+4) dim.
- r R V ~ 1/r

n=1 $R \sim 10^{13}$ cmexcludedn=2 $R \sim 100 \mu m - 1 mm$???n=3 $R \sim 3 nm$

N.Arkani-Hamed, S.Dimopoulos, G.Dvali (ADD)

Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

10.-13.09.2004 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

10.-13.09.2004 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

Di-electron/photon channel

actually use mass vs cos *
SM Prediction DØ Run-II preliminary

• In Randall-Sundrum model only one compact ED • Warps space-time by $e^{-2kr_c\pi} \Rightarrow$ coupling k/M_{pl}

10.-13.09.2004 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

Summary - Part III

Search for the Higgs

Search for New Phenomena

Backup Slides

Search for $H \rightarrow \gamma \gamma$

In 2HDM - type I Higgs coupling to fermions $g_{Hff} \sim \cos can go to zero$

- (` fermiophobic Higgs')
- Topcolor Higgs: only top has non-zero fermion coupling
- Increase of bosonic Higgs decays (in SM Br(H gg) 0.1% for m = 90 GeV)
- Iook for peaks in γγ mass spectrum for high p_τ isolated γ's

....no kinematic wall at Tevatron...

Super-Symmetry Models

Stop/Sbottom Searches

similarly 160 GeV stop-mass reach for
 Run-II analyses ongoing ...

 $\mathbf{q}\mathbf{q} \rightarrow \tilde{\mathbf{t}}^{\dagger} \tilde{\mathbf{t}} \rightarrow \tilde{\mathbf{c}} \tilde{\mathbf{\chi}}_{1}^{0} \tilde{\mathbf{c}} \tilde{\mathbf{\chi}}_{1}^{0}$

Charged Massive Particles

 General search for charged massive particles (heavy stops ?) carried out by CDF
 use time-of-flight system (TOF) to measure mass of charged particle/track

 obtain cross section limit from TOF distribution for heavy particles

Search for $B_s \rightarrow \mu^+ \mu^-$

Standard Model prediction BR(B $\rightarrow \mu^+\mu^-$) = (3.4 ± 0.5) $\cdot 10^{-9}$

> ... excellent place to look for SUSY and other new physics ...

Search for $B_s \rightarrow \mu^+ \mu^-$

- blind analysis (240 pb⁻¹):
- efficiency of selection cuts = (38.6 ± 0.7) %
- background prediction = 3.7 ± 1.1 event

BR(B $\rightarrow \mu^+\mu^-$) < **4.6**⁻¹**0**⁻⁷ (@95% CL)

similar for CDF new best limits, but more potential

$Z \rightarrow \tau \tau$ Signal at the Tevatron

- improved τ-finding in Run-II
- search for $\tau \rightarrow evv$ and τ hadrons
- also $\tau \rightarrow \mu \nu \nu$ being analysed ...
- finding Z ττ is milestone in SUSY and Higgs searches ...

Doubly Charged Higgs Bosons

....search for same-sign multi-lepton eventsat LEP, HERA, TEVATRON

Doubly Charged Higgs Bosons

10.-13.09.2004 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

Doubly Charged Higgs Bosons

if H⁺⁺ long lived expect two highly ionizing tracks in drift chamber ...

Chargino and Neutralino Limits

Limits on the lightest SUSY particles (LSP) in the constrained MSSM. **M**_{LSP} > **46 GeV/c²**

... new Di-/Tri-lepton results from Tevatron soon ...

• assumes SUSY-GUT (SU(5), SO(10)) relation : $M_1 = 5/3 \tan^2 \theta_w M_2$

 drop GUT relations (unification via string theory)
→ no collider bounds on m₁ $m_{\tilde{\chi}_{1}^{0}} > 100 MeV/c^{2}$

 $m_{\tilde{\chi}^0} > 5 GeV/c^2$

- 🗢 if LSP is lightest neutralino
- responsible for observed CDM relic density
- respect LEP2 limits on charginos, sleptons, sneutrinos D.Hooper, T.Plehn (hep-ph/0212226), Bottino et al. (PRD 67,063519 (2003))

from SN1987A

H.Dreiner et al. (hep-ph/0304289)

Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview