- Experimental Overview - Part II -

Arnulf Quadt

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

ROCHESTER

Part II

- Electroweak Physics
- Top Physics

Electroweak Physics

Electroweak Overview

- W/Z Production at the Tevatron
 - inclusive W/Z production cross section
- Z Production Characteristics
 - Drell-Yan, Asymmetry, ...

... here only a small selection ...

- W Production Characteristics
 - M_w, charge asymmetry, ...
- Associated Production of Vector Bosons
 ww, wz, wy, zy, ...

W and Z Production

well understood event signatures

leptonic decay modes avoid high jets background

- increase understanding of detector by studying W/Z production
- cross section relatively well known and high

σ_w *Br(W → In) ~ 2.7 nb

σ_{z/γ} * Br(Z/γ → II) ~ 0.25 nb

W/Z Event Signatures

Z Production

- select 2 opposite charged high-p, leptons
- backgrounds: Z $\rightarrow \tau \tau$ and qq/bb production for ee/µµ
- systematics: lepton-ID, PDF, acceptance, background
- correct from Z^*/γ^* to Z using MC

W Production

select 1 high-p, charged lepton and large missing E,

$W \Rightarrow ev$

... can use this analysis as luminosity measurement; goal $\Delta \sigma = \pm 1\%$... with 2 fb⁻¹ expectation: δm_w 40 MeV

W Mass

Tevatron W mass and width

from fits to M_T spectrum
 expect △m_w = 40 MeV
 per experiment, 25 MeV combined

LEP-2 W mass and width

from reconstructing W's
 ee → WW → qqqq or qqlv
 difference between two final states: △m_w = 22 +- 43 MeV

Summary of W/Z Cross Section

here CDF and DØ use different normalization common normalization agreed recently for Run-II ... combination of results easier ...

Indirect Measurement of Γ_{c}

medisurement measurement : interpretation : $R = \frac{\sigma_W}{\sigma_Z} \cdot \frac{Br(W \to l\nu)}{Br(Z \to l^+ l^-)}$ $R = \frac{\sigma_W \cdot Br(W \to l \nu)}{\sigma_Z \cdot Br(Z \to l^+ l^-)}$ **NNLO calc** luminosity error cancels Standard Model other systematics partially cancel: § 'my combination' - PDFs - experi.: high pT, isolated leptons $W \rightarrow l v$ I FP 10.74 ± 0.09 TeV $10.60 \pm 0.26^{\$}$ summer'03 Tevatron measurements of $R = \sigma \times Br(W \rightarrow |v) / \sigma \times Br(Z \rightarrow ||)$ W->tv LEP 11.20 ± 0.22 Standard Model -Run I + II combined[§] I FP $W \rightarrow uv - 10.55 \pm 0.16$ $11.11 \pm 0.41^{\$}$ TeV Run II Tevatron combined§ DØ (e) I FP 10.59 ± 0.17 $Br(W \rightarrow W) = \Gamma(W \rightarrow W) / \Gamma_w$ TeV $10.48 \pm 0.27^{\$}$ $DØ(u)^{\$}$ CDF (e) -11 11.5 12 CDF (µ) $Br(W \rightarrow lv)$ (%) Run I Tevatron combined Tevatron combined : $\Gamma(W \rightarrow W) = 2.135 \pm 0.053 \text{ GeV}$ DØ (e) CDF (e) LEP & Tevatron direct: $\Gamma(W \rightarrow I_V) = 2.139 \pm 0.069 \text{ GeV}$ 9 9.5 10 10.5 11 11.5 12 12.5 13 direct measurement of Γ_w from lineshape of M_r distribution 10.59 ± 0.20 Run (I+II) [§] 'my combination' 10.61 ± 0.30 Run II ... consistency test of direct and indirect Γ_{ij} ...

10.-13.09.2004 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

Forward-Backward Asymm. in Z Production

coupling ~
$$(g_v + g_A \gamma^5)$$

 $g_v = I_3 - 2Q_f \sin^2 \theta_w$
 $g_A = I_3$

$$\frac{1}{\sigma} \frac{d \sigma(s)}{d \cos \theta^*} = \frac{3}{8} (1 + \cos^2 \theta^*) + A_{FB}(s) \cos \theta^*$$

$$\clubsuit \qquad A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

at Tevatron can measure at Z pole, and above and below
 directly probes V-A, extract sin²θ_w and u/d couplings to Z

$sin^2 \theta_w = 0.2238 \pm 0.0046$ (stat.) ± 0.0020 (syst.)

W Charge Asymmetry (1)

u-quark in proton carries more momentum then d-quark (dbar-quark in antiproton) ♦ more W⁺ in direction of P ♦ more W⁻ in direction of Pbar

V-A decay: opposite asymmetry

 \mathbf{e}^{\dagger}

W Charge Asymmetry (2)

... Tevatron measurement provides main constraint of high-x PDF's at large scales ...

Top Quark Physics

Top Quark Physics

Introduction: The Top Quark in the Standard Model
 Top-Antitop Production Cross Section

- × Top Mass Measurement
- × W-Helicity in Top Quark Decays

Down

ELEMENTARY PARTICLES

Three Generations of Matter

Discovery of the Top Quark in 1995 by the CDF and DØ Collaborations.

Why is the Top Quark so interesting? × completes the quark sector $m_{top} \sim 180 \text{ GeV} / c^2$ x large mass $\tau \sim 5 \cdot 10^{-25} \text{s} \ll \Lambda^{-1}_{\text{ocd}}$ x short lifetime x sensitive to physics beyond the Standard Model LEPTONS **Electron Neutrino Muon Neutrino** Tau Neutrino Moss~0 Electron Muon Tau .511 105 7 1777 QUARKS Up Cham TOD Moss: 5 1 500 ~180 000

> Bottom 4 250

Higgs-Boson coupling to fermions : $g \sim m_f$ m, $\sim v/\sqrt{2}$, Yukawa coupling $\lambda_f \sim 1$

Strange

160

Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

W-Decay Determines Topology

Top quarks clecay predominantly (~100%) to a W-Boson and a b-quark

Top-Antitop Signatures:

`dilepton channel' 5% : 2 jets, 2 charged leptons, 2 ν

'lepton+jets channel'30%: 4 jets, 1 charged lepton, 1 v

'all-jets channel' 40%: 6 jets

always 2 jets are b-jets also look for lifetime- or μ -tag

... measure top production cross section (strong and weak) and properties ...

let' sook at the various topologies ...

b-tagging in CDF and DØ

- count the number of track with large positive DCA significance σ
- jet is tagged if
- N_{tr}(σ>2)>3 or
- N_{tr}(σ>3)>2

- explicitly reconstruct 3d vertices out of track jets
- cut on decay length significance

can also tag muon in jet from soft-lepton decay

b-tagging Efficiency and Fakre Rate

1.5

0.006

0.004

0.002

20

40

60

80

100

2.5

n

2

measured in inclusive sample, converted to light-tag rate using MC DØ CSIP/SVT slightly higher/lower fake rate \Rightarrow CDF/DØ similar performance

0.5

A Bon A 10.-13.09.2004 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

0.002

20

CSIP

80

100

ET. GeV

60

|n_{iet}| < 2.4

140

160

Jet E_T (GeV)

180

120

An Example µµ-Event

Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

CDF Top Cross Sections in Di-Leptons

197 pb⁻¹ data sample for all channels

 combine ee, μμ and eμ channels for best precision

10.-13.09.2004 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

Event Topology in Lepton+Jets

- 1 lepton with high p₁
- 1 v (reconstructed as transverse energy (met))
- ≥ 4 jets

multijet background (QCD) + misreconstructed met + fake isolated µ or e

Likelihood Fits in I+jets Channel

fit linear combination of QCD (inverted tight selection in data), W+4jet and ttbar to data

	muons	electrons
Nev	100	136
fitted N^w	74.7 + 12.7 - 12.0	94.6 + 15.8 - 15.0
fitted N^{gcd}	7.1 + 0.9 - 0.9	14.1 + 1.2 - 1.2
fitted N ^{tt}	17.8 + 9.9 - 8.7	27.5 + 12.7 - 11.7

10.-13.09.2004 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

Lepton+Jets Analysis in CDF

lepton+jets topological

exploit different strategies :

- high statistics topological
- b-jets tagging
 - displaced vertex
 - soft lepton (µ)

obtain consistent results

Run II Top Cross Section - Summary

Measurements demonstrate success of various top detection techniques results within errors consistent with NNLO SM prediction for 1.96 TeV of ~7 pb⁻¹

10.-13.09.2004 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

Measurement of the Top Mass in L+jets

• include background:

• minimize -log-Likelihood to measured a and fix the signal/bkg.-fractions !

• the challenge: obtain the P(α,x) !

Measurement of the Top Mass in L+jets

Obtain probabilities by folding differential X-section with object resolutions:

take permutations (jet-parton-assignment) and reconstruction ambiguities into account by summing over different possibilities

- Transfer functions are set to δ-functions for well-measured quantities (jet-angles, electron momentum)
- for jet-energies: W_{jets} (E_{part}, E_{jet}) relating parton- and jet-energies, obtained as parametrization for b- and non-b-Jets from MC

Application to Run-I Data

Signature : 1 charged lepton, 4 jets, Missing energy DØ Statistics Run I : 125 pb⁻¹

Standard Selections:

- Lepton: E₁>20 GeV, Ιη^eI<2, Ιη^μI<1.7</p>
- ♦ Jets: 4, E_r>15 GeV, I ղ[⊥]I<2
- Missing E₁ > 20 GeV
- **♦ "E_r""> 60 GeV** ; Iղ^w I<2

91 events

Ref. PRD 58 (1998), 052001:

After kinematic cut (77 events): ~29 signal + ~48 backg.

(80% *W+jets* and 20% QCD)

Specific cuts for this analysis:

- **4** Jets only :
- Background Prob. :

71 events
22 events

Application to Run-I Data

Nature 429, 638-642 (10 June 2004)

- improvement corresponds to 2.4-times statistics !
- result compatible with previous measurement in the lepton+jets channel at about the 1.7 sigma level !

ttbar model	1.5 GeV
W+jets model	1.0 GeV
Noise and multiple i.a.	1.3 GeV
Jet energy scale (JES)	3.3 GeV
PDF's	0.2 GeV
Acceptance correction	0.5 GeV

Error estimated by rescaling jet energies by the JES uncertainty and taking the maximum difference.

World Average m_{top} and Higgs Mass

Run II Top Mass Measurement in CDF

Dynamical Likelihood Method is similar to DØ `matrix element method'

Top Mass Summary

TeV EWWG is working on combination of Run II m, measurement from CDF and DØ

Search for Single Top Production

EW production of top quark similar strength as strong production !!!

- direct probe of IV_{tb} I
- search for new physics
- topology similar to ttbar in I+jets,

but lower jet multiplicity and more forward more background (W+jets, tt, dibosons, ...)

need ~ 1 fb⁻¹ for observation

95% CL limits	CDF	DØ
σ (s-channel)	< 13.6 pb	< 19 pb
σ (t-channel)	< 10.1 pb	< 25 pb
σ (s+t channels)	< 17.8 pb	< 23 pb

10.-13.09.2004 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

Helicity of the W in ttbar Events

10.-13.09.2004 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

Helicity of the W in tibar Events (Run I)

• Uncertainty on the top mass translates into a systematic error on the measurement of F_0

$$L(F_0) = \int L(M_{top}, F_0) dM_t$$

DØ Run I analysis using Matrix Element' $F_0)dM_t$ technique

- Integrate over M_{top} from 165 to 190 GeV
- Most probable value and 68.27% interval using M_{top}=175 GeV
- 22 events pass our cuts => from fit, 12 signal + 10 background events

	Statistics + M_{top} uncertainty	0.306		
ita	Jet Energy Scale			
From da	Acceptance-Linearity Corr.	0.021		
e	Background	0.010		
Mont	Signal Model	0.020		
ro n	Multiple Interactions	0.009		
ш	ttbar Spin Correlations	0.008		

10.-13.09.2004 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

Top Quark Outlook

further top properties measurements in preparation: • top coupling

- anomalous kinematics
- rate of top decays to τνb (charged Higgs)
- branching ratios
- top charge

•

	CDF+DØ	ATLAS/CMS			CDF+DØ	ATLAS/CMS	
W helicity F ₀ , F ₊	0.09, 0.03		S	single top	20.00%	0.71%	
R _{2b/1b}	4.50%	~0.2%	Γ	T _t from single top	/25.00%		
I V _{tb} I	from R			IV _{tb} I from single top	12.00%	0.36%	
Β(t → γ q)	2 * 10-3	1.0*10-4	B	B(† → Zq)	0.02	1.1*10-4	
$\Delta \mathbf{m}_{top}$	2.GeV	/1-2 GeV	H	Higgs	discovery ?	discovery !	
Δ m w	20 MeV	20 MeV	Y	Yukawa Coupl. y _t		12-16%	

Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

Summary - Part II

- Electroweak Physics
- Top Physics

Backup Slides

Detection of High p, Objects

10.-13.09.2004 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

An Example eµ-Event

Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

DØ Top Cross Sections in Di-Leptons

Golden mode signature (topological selection)

-> isolated (not in jet) high P_t ee(156 pb⁻¹),

μμ(140 pb⁻¹), eμ (143 pb⁻¹) pair

- -> 2 or more jets
- -> Missing Et

0

2

Backgrounds: WW, Z+jets, W+jets, QCD jets, fakes

Number of Jets

10.-13.09.2004 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

Overview over µ+Jets Analysis

🛝 📩 10.-13.09.2004 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

Determination of Multijet Background

- : independent multijet (QCD) data set (met < 10 GeV)
- W+ttbar: W+Jets Monte Carlo simulation

(Monte Carlo to Data calibration from Z+Jets events)

→ solve equations for N_{QCD} and N_{W+11bar}

determine multijet (QCD) background entirely from data

Topological Event Likelihood

choose topological variables:
with strong separation potential
with small sensitivity to jet energy scale

use the following variables: angular dependent:

- sphericity
- aplanarity

ratio of energy-dependent quantities:

- HT2prime
- ktminprime

topological likelihood:

Kinematic Distributions in I+jets Channel

10.–13.09.2004 Maria Laach Summer School 2004 – Arnulf Quadt – Hadron Collider Physics, Experimental Overview

ROCHESTER Page 50

Tibar Cross Section in I+Jets

combined ttbar cross section from e+jets, μ +jets:

e + jets (CC) :
$$\sigma_{p\overline{p}\to t\overline{t}+X} = 8.8^{+4.1}_{-3.7} (\text{stat})^{+1.6}_{-2.1} (\text{syst}) \pm 0.6 (\text{lumi}) \text{ pb}$$

 $\mu + \text{jets} : \sigma_{p\overline{p}\to t\overline{t}+X} = 6.0^{+3.4}_{-3.0} (\text{stat})^{+1.6}_{-1.6} (\text{syst}) \pm 0.4 (\text{lumi}) \text{ pb}$

1

+ jets :
$$\sigma_{p\overline{p}\to t\overline{t}+X} = 7.2^{+2.6}_{-2.4} \text{ (stat)}^{+1.6}_{-1.7} \text{ (syst)} \pm 0.5 \text{ (lumi)} \text{ pb}$$

Run II Top Mass Measurement in DØ

Measurements in I+jets channel (~150 pb⁻¹)

- template method uses templates for signal and background mass spectra
- ideogram method uses analytical likelihood for event to be signal or background for each event

Template

Ideogram

Unexpected Top Decay Modes ?

Assuming three generation CKM unitarity, IV_{μ} I=0.999 $b=BR(t \rightarrow Wb)$ \Rightarrow R = BR(t \Rightarrow Wb) / BR(t \Rightarrow Wq) > 0.998 Can measure ratio by checking the b-quark content of the top sample decay if efficiency to tag a b-quark is $\varepsilon_{\rm c}$ (~0.45 at CDF), then Combined likelihood – CDF II Preliminary 161 pb⁻¹ 0 0.022 "double tagged" $\varepsilon_{2} = (b \varepsilon_{2})^{2}$ 0.02 **≦** 0.018 9 0.016 $\varepsilon_1 = 2b \varepsilon_b (1 - b \varepsilon_b)$ "single tagged" $\varepsilon_0 = (1 - b \varepsilon_0)^2$ "un-tagged" 300 C 0 006 0.004 BR(t \rightarrow Wb) / BR(t \rightarrow Wq) > 0.62 @ 95% CL 0.002 0.6 0.2 0.8 04

Does top decay into something else than Wb ? like Xb, where X \rightarrow qq (100%) or Yb, where Y \rightarrow lv (100%) ? estimate using ratio of top cross section $\sigma_{\parallel}/\sigma_{\parallel}$

BR(tXb) < 0.46 @ 95% CL</th>BR(tYq) < 0.47 @ 95% CL</th>

R∆∈

Helicity of the W in ttbar Events (Run II)

Resonances in tt System ?

No resonance production in the system is expected in SM (cc, bb, ...) some models predict particles which decay into the team example: topcolour-assisted technicolour ⇒ predicts leptophobic Z' with strong 3rd-generation coupling

experiment: search for bumps/peaks in ttbar effective mass spectrum

DØ Run I analysis

10.-13.09.2004 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

Transverse W-Mass

in the W rest frame:

$$p^{e,v} = \frac{m_{W}}{2} \quad \text{and} \quad p_{T}^{e,v} = \frac{m_{W}}{2} \cdot \sin \Theta \Rightarrow \frac{m_{W}}{2} \cdot \sqrt{1 - \cos^{2}\Theta} = p_{T} \Rightarrow \cos \Theta = \sqrt{1 - \frac{4 p_{T}^{2}}{m_{W}^{2}}}$$

... and hence ... "Jacobian"

$$\frac{d\sigma}{dp_{T}^{e}} = \frac{\partial\sigma}{\partial\cos\Theta} \cdot \frac{\partial\cos\Theta}{\partial p_{T}}$$

$$\frac{d\sigma}{dp_{T}^{e}} = \frac{\partial\sigma}{\partial\cos\Theta} \cdot \frac{2 p_{T}}{m_{W} \cdot \sqrt{\left(\frac{m_{W}}{2}\right)^{2} - p_{T}^{2}}}$$

$$p_{T}^{e} \leq \frac{m_{W}}{2} \quad \text{and}$$

$$p_{T}^{e} \leq \frac{m_{W}}{2} \quad \text{and}$$

$$p_{T}^{e} \leq \frac{m_{W}}{2} \quad \text{and}$$

$$\frac{d\sigma}{dp_{T}^{e}} \quad \text{maximal for} \quad p_{T}^{e} = \frac{m_{W}}{2}$$

$$p_{T}^{e} \leq \frac{m_{W}}{2} \quad \text{and}$$

$$p_{T}^{e} \leq \frac{m_{W}}{2} \quad \text{and}$$

$$\frac{d\sigma}{dp_{T}^{e}} \quad \text{maximal for} \quad p_{T}^{e} = \frac{m_{W}}{2}$$

Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

ROCHESTER Page 56

 $p_T^e(\widetilde{C})$

Transverse W-Mass

Events / 0.5 GeV/c

transverse mass analogous to invariant mass, except that only components transverse to the beamline are used:

$$m_T^2 = (E_T^e + E_T^v)^2 - (\vec{p}_T^e + \vec{p}_T^v)^2$$
$$= E_T^{e\,2} - \vec{p}_T^{e\,2} + E_T^{v\,2} - \vec{p}_T^{v\,2} + 2E_T^e E_T^v - 2\vec{p}_T^e \vec{p}_T^v$$

 $m_{y}^{2} \cdot \sin^{2} \Theta$

$$= 2 E_T^e E_T^v \left(1 - \cos \phi^{e,v} \right)$$

 $m_e^2 \cdot \sin^2 \Theta$

$$m_T \le \sqrt{4 E_T^e E_T^v} = 2 E_T^e \le m_W$$

maximal for $\phi = 180^{\circ} \land \Theta = 90^{\circ}$

Transverse W-Mass

- $\begin{pmatrix} E_T \\ p_T \end{pmatrix}_{Lab.} = \begin{pmatrix} \gamma & \beta \gamma \\ \beta \gamma & \gamma \end{pmatrix} \begin{pmatrix} E_T \\ p_T \end{pmatrix}_{rest frame}$
 - $E_{T,L} = \gamma E_{T,R} + \beta \gamma p_{T,R} \\ p_{T,L} = \beta \gamma E_{T,R} + \gamma p_{T,R}$

 $\gamma^2 = \frac{1}{1-\beta}$

 $M_{T,L}^{2} = E_{T,L}^{2} - p_{T,L}^{2} = \gamma^{2} E_{T,R}^{2} + \beta^{2} \gamma^{2} p_{T,R}^{2} + 2\beta \gamma^{2} E_{T,R} p_{T,R} - \beta^{2} \gamma^{2} E_{T,R}^{2} - \gamma^{2} p_{T,R}^{2} - 2\beta \gamma^{2} E_{T,R} p_{T,R}$ $= E_{T,R}^{2} - p_{T,R}^{2} = M_{T,R}^{2}$

1.) m_{T} is invariant under transverse boosts 2.) m_{T} =m if p_{z} =0, also in W rest frame 3.) m_{T} not invariant under longitudinal boosts, but still: $\frac{d \sigma}{d m_{T}}$ is maximal for m_{T} =m $m_{T} \le m$

W-Decay Angular Distribution (1)

In general (angular momentum in Quantum Mechanics):

$$\left|\left|\vec{\boldsymbol{p}}\right|,\boldsymbol{\Theta},\boldsymbol{\Phi},\boldsymbol{\lambda}_{1,\lambda_{2}}\right\rangle = \sum_{J,J_{3}} \sqrt{\frac{2J+1}{4\pi}} D_{J_{3,\lambda}}^{J}(\boldsymbol{\phi},\boldsymbol{\Theta},-\boldsymbol{\phi}) \left|\underbrace{\sqrt{s},J,\left|\vec{\boldsymbol{p}}\right|,J_{3,\lambda_{1,\lambda_{2}}}\right\rangle$$

basis of helicity states which are simultaneously eigenstates of angular momentum

here (neglect J, p, m since constants) (angular momentum conservation) $T_{j} = \sqrt{\frac{2J+1}{4\pi}} D^J_{J_{3,\lambda}}(\phi, \Theta, -\phi) \langle J_{3,\lambda_1,\lambda_2} | T | J_3 \rangle$ $t_{\lambda,\lambda}$

independent of J₂ due to rotational invariance \rightarrow call it

since polarisation of outgoing particles not observed sum over them:

$$\frac{d\Gamma}{d\Omega} \sim \sum_{\lambda_1,\lambda_2} \left[d^J_{J_{3,\lambda}}(\Theta) \right]^2 |t_{\lambda_1,\lambda_2}|^2$$

W-Decay Angular Distribution (2)

🛝 🖄 10.-13.09.2004 🛛 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

Question 4: Top Quark Production

Consider the top quark pair production process $p\bar{p} \rightarrow t\bar{t} + X$ $\bigvee_{i,d}^{i,d}$

$$\sum_{i,j=1}^{n,j} aaaaaaa \sum_{i} \sum_{j=1}^{n} \frac{1}{2}$$

In order to calculate the $t\bar{t}$ production cross-section in proton-antiproton collisions it is $\mu^+\mu^-,$ only mediated via ↑ e_{-} \tilde{e}^+ very helpful to recall the cross-section for the process photon exchange, i.e. the pure QED contribution:

$$\frac{d\sigma^{(e^+e^-\to\mu^+\mu^-)}}{d\Omega} = \frac{\alpha^2\beta_{\mu}}{16E^2} \left(1 + \frac{M^2}{E^2} + \beta_{\mu}^2 \cos^2\Theta\right) \qquad (5)$$

$$\beta_{\mu} = \sqrt{1 - \frac{M^2}{\Omega}} \text{ muon velocity} \qquad (6)$$

$$\beta_{\mu} = \sqrt{1 - \frac{M}{E^2}} \text{ muon velocity} \tag{6}$$
$$M = \text{ muon mass} \tag{7}$$
$$E = \text{ muon energy} \tag{8}$$

$$E = muon \text{ energy}$$
 (8)
 $\Theta = muon scattering angle$ (9)

$$\frac{d\sigma^{(e^+e^-\to\mu^+\mu^-)}}{d\Omega} = \begin{cases} 0 \text{ for } E = M\\ \frac{\alpha^2}{16E^2} (1 + \cos^2\Theta) \text{ for } E \gg M \end{cases}$$
(10)

 \sim

The two processes differ in

- that the electromagnetic coupling α has to be replaced by the strong coupling α_s.
- we have to consider that the exchanged gluons can come in different colour states, i.e. we need to include a colour factor. •
- we need to know how many quarks of which energy in the proton can participate in the t-thar production.

Clebsch-Gordan coefficients for coupling of quarks with the gluon octett. Complete in the quark-antiquark $\frac{1}{2}C_1C_2$ where C_1 and C_2 are the annihilation, using the table of the gluon octet colour wave functions. following table for the different colour states involved The colour factor C_F of a reaction is given by $C_F =$ the •

	colour factor C_F	$\frac{1}{2} \cdot \left(\frac{1}{\sqrt{6}}\right) \cdot \left(\frac{-2}{\sqrt{6}}\right) = -\frac{1}{6}$					$ B\overline{B} >)$					$-2 B\bar{B}>)$
I	rk colour combination	$q_B \bar{q}_B \rightarrow q_B \bar{q}_B$ $q_B \bar{q}_R \rightarrow q_B \bar{q}_R$	$q_B \bar{q}_R \rightarrow q_R \bar{q}_B$ $a_B \bar{a}_C \rightarrow a_B \bar{a}_C$	$q_B \bar{q}_G \rightarrow q_G \bar{q}_B$		permutations	$\left \frac{1}{\sqrt{3}}(R\bar{R}>+ G\bar{G}>+$	$ G\overline{B} >$	$ R\bar{B}>$	$- G\bar{R}>$	$\left \frac{1}{\sqrt{2}} (G\bar{G} > - R\bar{R} >) \right $	$\left \frac{1}{\sqrt{6}}\left(R\bar{R}\rangle + G\bar{G}\rangle - \right $
	ss qua				 	 	singlet	octet				
	gluon colour state	$(\bar{R}R) \cdot (\bar{B}B)$										

Taking all the permutations into account we need to calculate $3 \times \sum_i (C_F)_i^2$. Explain why. Equivalently to the argument of spin summation and averaging in lepton scattering we now need to average over the the colours of the incoming quarks. Show that the total colour factor is $\frac{2}{9}$. Let's now calculate the cross-section $\sigma(q\bar{q} \rightarrow t\bar{t})$ by integrating (5) over the solid angle. Show that this integration yields •

$$\sigma(q\bar{q} \to t\bar{t}) = \frac{\pi \alpha_{\pi}^2}{27m_t^2} \rho_t(2+\rho_t)\sqrt{1-\rho_t}$$

where $\rho_t = \frac{4m_t^2}{\hat{s}}$ and \hat{s} is the centre-of-mass energy in the quark-antiquark system.

- Only considering valence quarks how many combinations of quark-antiquark pairs can we get in the initial state ? .
- Estimate the quark-antiquark centre-of-mass energy squared, \hat{s} , for the Tevatron Run-I, i.e. for proton-antiproton collisions with centre-of-mass energy $\sqrt{s} = 1.8$ TeV. •
- Approximate $\alpha_s(m_t) \approx 0.1$ and plug in all numbers to calculate $\sigma_{(p\bar{p} \to t\bar{t})}^{\sqrt{s}=1.8 \text{ TeV}}$.

 $-|B\bar{R}>$ $R\bar{G} >$

BG >

Question 5: Top Quark Decay

Consider the decay of the top quark to a b quark and a W-boson.

• The corresponding matrix element is given by

$$T_{fi} = \frac{g}{\sqrt{2}} |V_{th}|^2 \, \widetilde{u}(p') \gamma^{\mu} \frac{1-\gamma^5}{2} \frac{t_{op}}{u(p)} \stackrel{W}{\longrightarrow} \stackrel{\text{polarisation}}{\overset{*}{\mapsto} (k')}$$
(11)

weak coupling

In the top rest frame, squaring and summing over the spins, one obtains

$$\sum |T_{fi}|^2 = \frac{g^2}{2} \cdot \frac{m_t^4}{M_W^2} \left(1 - \frac{M_W^2}{m_t^2}\right)^2 \left(1 + 2\frac{M_W^2}{m_t^2}\right)$$
(12)

 $\frac{|\vec{p}|}{8\pi M^2}\overline{\sum}|T_{fi}|^2$ where M is the mass of the decaying particle and \vec{p} is the momentum of one of the decay products, Ш Calculating the spin average (factor 1/2) and using Γ calculate the decay rate Γ_t .

- $\frac{8G_F}{\sqrt{2}}$ to calculate the numerical value of Γ_t for a top quark Ш Use the relation $\frac{g^2}{M_W^2} = 175 \text{ GeV}$ mass of $m_t = 175 \text{ GeV}$ •
- Derive the top quark lifetime τ_t from that. What is so special about the obtained time ?

Top-Antitop Cross Section (3)

Top-Antitop Cross Section (4)

partonic to hadronic ttbar cross section:

$$\frac{d \sigma_{p \overline{p}}}{dz} = \sigma_{q \overline{q}}(z s) \quad L_{q \overline{q}}(z)$$

$$Def.: \quad z = z_1 z_2 \quad r = z_1 / z_2$$

$$L_{q_i \overline{q_j}}(z) = \int_{z}^{1/z} q_i(\sqrt{zr}) \quad q_j(\sqrt{z/r}) \frac{1}{2r} dr$$

PDF parametrisation:

$$x u_{v}(x) = 1.78 x^{0.5} (1 - x^{1.51})^{3.5}$$

$$x d_{v}(x) = 0.67 x^{0.4} (1 - x^{1.51})^{4.5}$$

$$x u_{s}(x) = 0.182 (1 - x)^{8.54}$$

$$x d_{s}(x) = x u_{s}(x)$$

$$x s_{s}(x) = 0.081 (1 - x)^{8.54}$$

Top-Antitop Cross Section (5)

result of numerical integration from previous page:

10.-13.09.2004 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

ROCHESTER Page 65

10.-13.09.2004 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview

Lepton+Jets Channels with b-tagging

10.-13.09.2004 Maria Laach Summer School 2004 - Arnulf Quadt – Hadron Collider Physics, Experimental Overview