XXXIV Int. Symp. on Multiparticle Dynamics, Sonoma County, July 29, 2004

Physics with Jets at the LHC

Jim Rohlf Boston University

ISMD Rohlf – p.1/50

Outline

Introduction

- Detectors and expected performance
- Event Rates and Triggering
- Calibration
- Missing transverse energy
- SUSY
- Higgs (taus and b tagging)
- **Z**′
- Compositeness
- Heavy Ion Collisions
- Summary and Outlook

Documents

ATLAS DETECTOR AND PHYSICS PERFORMANCE

Technical Design Report

Issue: Revision: Reference: Created: Last modified: Prepared By:

1 0 ATLAS TDR 15, CERN/LHCC 99-15 25 May 1999 25 May 1999 ATLAS Collaboration

Volume II

LABORATOIRE EUROPÉEN POUR LA PHYSIQUE DES PARTICULES CERIVLI CMS TD CERN EUROPEAN LABORATORY FOR PARTICLE PHYSICS 15 Decer

CERIVLHCC 2002-26 CMS TDR 62 15 December 2002

The Trigger and Data Acquisition project, Volume II Data Acquisition & High-Level Trigger Technical Design Report

ISMD Rohlf – p.3/50

P. Collier 12/6/2000

ISMD Rohlf – p.4/50

Charged particles

ISMD Rohlf – p.5/50

SLHC LHC parameters

pp c.m. energy	14 TeV
luminosity	$10^{34} \mathrm{cm}^{-2}\mathrm{s}^{-1}$
collision rate	1 GHz
W/Z ⁰ rate	1 kHz
bunch spacing	25 ns
interactions per crossing	20
$rac{dN_{ m ch}}{d\eta}$ per crossing	$10^5 \mathrm{cm}^{-2}\mathrm{s}^{-1}$
track flux @ 1 m	$10^5 \mathrm{cm}^{-2}\mathrm{s}^{-1}$
<i>rad. dose</i> @1 m <i>for</i> $2500 ext{ fb}^{-1}$	1 kGy

First physics expected at "low luminosity": $2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

ISMD Rohlf – p.6/50

Kinematics and Cross Section

 \underline{ISMD} Rohlf – p.7/50

Detectors overview

tracking in B field
EM calorimetery
had. calorimetry
muon detectors

A Toroidal Large hadron collider AparatuS (ATLAS) 7 kTons 0.5 T toroid, 2 T solenoid 25 m \times 46 m Compact Muon Solenoid (CMS) 14 kTons 4 T solenoid 15 m \times 22 m ISMD Rohlf – p.8/50

ATLAS and CMS zeroth-order difference

ATLAS

Large magnet cost (40%)
good stand-alone muon resolution (*BL*²)
less resources spent on ECAL and tracking

CMS Lower magnet cost (25%) high-resolution tracker high-performance ECAL

Detector technology

		CMS	ATLAS
Tracking: in	ner	pixels	pixels
ba	rrel	silicon strips	silicon strips / straw tubes
end	cap	silicon strips	silicon strips / straw tubes
ECAL: ba	rrel	crystals $(PbWO_4)$	liquid argon / Pb
end	cap	crystals $(PbWO_4)$	liquid argon / Pb
HCAL: ba	rrel	scintillator / brass	scintillator / Fe
end	сар	scintillator / brass	liquid argon / Cu
forw	vard	quartz / Fe	liquid argon / Cu-W
Muon: ba	rrel	drift chambers	drift tubes
		+resistive plate	+resistive plate
end	сар	cathode strip	cathode strip
		+ resistive plate	+ thin gap

ATLAS: scintillator / Fe

	coverage	res. @ 100 GeV	thickness	$\Delta\eta \times \Delta\phi$
ATLAS	$ \eta < 1.0$	8%	8-10 λ	front $0.1 imes 0.1$
extended barrel	$0.8 < \eta < 1.7$			_{back} $0.2 imes 0.1$
CMS	$ \eta < 1.4$	10%	11-15 λ	0.087 × 0.087

ISMD Rohlf – p.11/50

HCAL end cap ATLAS: liq. argon / Cu

CMS: scintillator / brass

	coverage	res. @ 100 GeV	thickness	$\Delta\eta \times \Delta\phi$
ATLAS	$1.5 < \eta < 3.2$	8%	9λ	$1.5 < \eta < 2.5 \ 0.1 \ imes \ 0.1$
				$2.5 < \eta < 3.2 \ 0.2 \times 0.1$
CMS	$1.4 < \eta < 3.0$	10%	11 λ	$1.4 < \eta < 1.7 \ 0.087 \times 0.087$
				$1.7 < \eta < 3.0 \ 0.087 \times 0.17$

ISMD Rohlf – p.12/50

CMS endcap contribution of Russian Navy

After removing the 'business end'.

Forward

ATLAS: liquid argon / Cu-W

CMS: quartz / Fe

	coverage	π res. @ 300 GeV	thickness	$\Delta\eta \times \Delta\phi$
ATLAS	$3.1 < \eta < 4.9$	8%	9 λ	0.2 × 0.2
CMS	$3.0 < \eta < 5.0$	20%	10 λ	0.17 × 0.17

ISMD Rohlf – p.14/50

 \underline{ISMD} Rohlf – p.15/50

Trigger CMS calorimeter

October 2003 - 3

Jet Reconstruction C++ code

cone based algorithms: SimpleCone IterativeCone MidPointCone (CMS and CDF/DO implementation) cluster algorithms: inclusive KtJets • exclusive KtJets (d_{cut}) • exclusive KtJets (N_{jets})

HLT Jet Resolution

Simple cone algorithm with 3 parameters: cone size, seed threshold, minimum jet E_{T} .

Small cone contains energetic partons, but larger cone needed to include soft fragmentation which introduces noise.

 \underline{ISMD} Rohlf – p.18/50

Jet rates

The jet rates are huge!

Low Lum.

ISMD Rohlf – p.19/50

Calibration overview CMS

- HCAL is a "small" system (9072 channels)...
 however, the number of active elements is "large"
 90k tiles for HB/HE/HO, 200k fi bers for HF
- An absolute calibration of 2% for single particles is the goal on day 1 using radioactive sources tied to test beam measurements.
- Final calibration is likely to come from data.
 Is this not almost always the case?
 Tools: mip, ch. hadrons, γ,Z+jet, jet-jet, W→ jet-jet from top, ???

Jet energy calibration and dijet mass calibration constitutes a challenge beyond that of single particle response.

ISMD Rohlf – p.20/50

Source calibration technique

CMS HCAL is calibrated with moving radioactive sources. The technique is described in E. Hazen *et. al*, "Radioactive Source Calibration Technique for the CMS Hadron Calorimeter," Nucl. Inst. and Meth. A 511 (2003) 311.

 $IS\overline{MD}$ Rohlf – p.21/50

Source calibration test beam

The technique has been tested in the test beam (2002) 128 HB towers \times 16 layers and repeated with HE and HF (2003 and 2004).

ISMD Rohlf – p.22/50

Resolution and linearity CMS

ISMD Rohlf – p.23/50

Improving jet resolution with tracks

- Replace energy recorded in calorimeter with track pc where signals are consistent.
- Add in tracks that are swept out of jet cone by magnet.

 \overline{ISMD} Rohlf – p.24/50

CMS Note

Improving jet resolution with tracks cont.

Jet resolution improved, huge corrections for central jets (about 25% for 50 GeV, $|\eta| < 0.3$), less for forward jets.

Jet energy and jet-jet mass scale corrected.

ISMD Rohlf – p.25/50

MET Resolution

η coverage	7-10%
low p_{T} hadrons	5%
low p_{T} charged tracks	10%
minimum bias event	10-15%
pileup (low lum.)	13-15%
pileup (high lum.)	20%
electronic noise	10-12%
det. resolution	15%

"total" = 30-35% in 50 GeV MET ($t\bar{t}$ events)

ISMD Rohlf – p.26/50

J. Rohlf, LHC IV p. 23

ISMD Rohlf – p.27/50

SUSY MET+jets

 \overline{ISMD} Rohlf – p.28/50

ISMD Rohlf – p.29/50

MSUGRA Cascade $\chi_2 \rightarrow \chi_1 h \rightarrow \chi_1 b \overline{b}$

ISMD Rohlf – p.30/50

SUSY Reach $\chi_2 \rightarrow \chi_1 h \rightarrow \chi_1 b \overline{b}$

ISMD Rohlf – p.31/50

final state: *qqb l∨b bb*

event selection: lepton, 4 *b*-tag jets, 2 non-*b* jets, *W* mass, *t* mass (2) main backgrounds: *ttbb, ttZ*

ISMD Rohlf – p.32/50

\overline{ISMD} Rohlf – p.33/50

Vector boson fusion Forward cal. important!

 \underline{ISMD} Rohlf – p.34/50

 $\mathbf{Z}' \rightarrow \mathbf{jet} \ \mathbf{jet}$

 $\overline{ISM}\mathcal{D}$ Rohlf – p.35/50

JetMET Dijet mass DC04 (R. Harris)

ISMD Rohlf – p.36/50

Asymptotic freedom CERN jet events 1982

ISMD Rohlf – p.37/50

Compositeness

cross section gets a term $\frac{\hat{s}}{\alpha \Lambda^2}$

ISMD Rohlf – p.38/50

Scattering quarks 1986

demonstrating:
1/r² strong force
spin 1 gluon
pointlike quarks

 $ISM\mathcal{D}$ Rohlf – p.39/50

Scattering quarks 1986

demonstrating:
1/r² strong force
spin 1 gluon
pointlike quarks

ISMD Rohlf – p.39/50

Scattering quarks 1986

Pileup is important!

 $10^{33} \text{ cm}^{-2} \text{s}^{-1}$

 $10^{34} \text{ cm}^{-2} \text{s}^{-1}$

ISMD Rohlf – p.41/50

Effect of pilepup Atlas: W→jj from top

ISMD Rohlf – p.42/50

Jets in Heavy Ion collisions

Hard probes ⇒ early times Calculable: pQCD Abundant at RHIC, LHC

<u> $k_{\underline{T}}$ "radiative corrections"</u> pre- and post-scattering di-jet: $\Delta \phi \neq \pi$

In QCD Medium Additional k_T Significant energy loss? \Rightarrow high p_T suppression Sensitive to color properties of medium

J. Harris, Vienna, July 2004

 $I\!S\!\mathcal{M}\!\mathcal{D}$ Rohlf – p.43/50

Jets in Heavy Ion collisions

ISMD Rohlf – p.44/50

Jet identification and jet structure

Longitudinal momentum fraction z along the thrust axis of a jet:

Z+jet event in the Heavy Ion collision dNch / dY = 5000

Pt(Z) = Et(Jet) = 100 GeV.

p_T relative to thrust axis:

ISMD Rohlf – p.45/50

VIII ISMD Kaysersberg, France, 1977

SPIRES 3

Нер	::	HEPNAMES	s ::	INSTITU	TIONS	.::	CONFERENCES
Modify you	ur searc	h below.					
FIND KEY 2	47677					1	
Browse Au	uthor	Format:	Standard	Cites	Citesu	<u>mmary</u>	LaTeX
	whoma at		SON OF HAT		PRODUC		

PI- AND P BEAMS ON HYDROGEN AND ALUMINUM TARGETS. Kayserberg Conf.1977:B-89 (QCD161:C49:1977)

What is a jet? We use an empirical definition of a jet based on our apparatus: a jet is a cluster of particles with high p_t hitting our calorimeter. There are three components to this cluster: charged, electromagnetic neutral, and hadronic neutral. We require the jet vector, the vector sum of these components, to hit a fiducial area in the center of the calorimeter. The calorimeter acceptance for jets with properties described in Section I is discussed in Ref. 6.

There are a number of problems with this jet definition. A jet associated particle can miss the calorimeter, thus changing the magnitude and direction of the jet vector. In some cases the direction will change enough to move the jet vector from outside the fiducial area into the fiducial area or vice-versa, thus changing the cross-section. Another problem is a non-jet associated particle hitting the calorimeter, thus adding to the

 \underline{ISMD} Rohlf – p.46/50

E260 First calorimeter jet trigger (1977)

Field-Feyman fragmentation

QCD calculation (G. Fox)

 $\sigma(pp \rightarrow jet) / \sigma(\pi p \rightarrow jet)$

ISMD Rohlf – p.47/50

XIII ISMD Volendam, 1982

SPI	R	ES					
Нер		HepNames	н	INSTITUTIONS	::	Conferences	ż
Modify your FIND KEY 11 Browse Aut	searcl 67006 <mark>hor</mark>	n below. Format: Sta	ndard	<u>Cites</u>	ımary	<u>LaTeX</u>	
MEASUREMENT OF THE CHARM QUARK FRAGMENTATION FUNCTION. (TALK). By J.W. Rohlf (Harvard U.), 1982. In *Volendam 1982, Proceedings, Multiparticle Dynamics 1982*, 589-596.							
<u>LaTe></u> EXP ((<u>(US)</u> CESR-	<u>LaTeX(EU)</u> <u>Ha</u> <u>CLEO</u>	arvma	c <u>BibTeX Keyw</u>	<u>ords</u>		

ISMD Rohlf – p.48/50

Summary

- Jets are an important part of LHC physics Higgs, SUSY, compositeness, and the UNKNOWN!
 Calibration and triggering will be challenging
 Relating measured jets to parton 4-vectors remains a central issue
 - If we are lucky, we may have an opportunity to do high-mass jet spectroscopy with high statistics... (top is both a calibration tool and a vicious background)

Predictions

ISMD Rohlf – p.50/50

The first physics papers from the LHC will be on jets. ISMD XXXVIII ? There will be a renewed interest in multiparticle dynamics at the TeV scale!

Predictions

The first physics papers from the LHC will be on jets. ISMD XXXVIII ? There will be a renewed interest in multiparticle dynamics at the TeV scale!

The results will be exciting (worth waiting for)!

