Physics at the Tevatron

Lecture IV

Beate Heinemann University of California, Berkeley Lawrence Berkeley National Laboratory

Outline

- Lecture I:
 - The Tevatron, CDF and DØ
 - Production Cross Section Measurements
- Lecture II:
 - The W boson mass, the Top Quark and the Higgs Boson
 - · Lepton calibration, jet energy scale and b-tagging
- Lecture III:
 - Lifetimes, B_s^0 and D^0 mixing, and B_s → $\mu\mu$ rare decay
 - Vertex resolution and particle identification
- Lecture IV:
 - Supersymmetry and High Mass Resonances
 - Missing E_T and tau-leptons

All lectures available at:

Does the Standard Model work?

pro's:

- Is consistent with electroweak precision data con's:
- Accounts for only 4% of energy in Universe
- Lacks explanation of mass hierarchy in fermion sector
- does not allow grand unification of forces
- Requires fine-tuning (large radiative corrections in Higgs sector)
- Where did all the antimatter go?
- Why do fermions make up matter and bosons carry forces?

The Unknown beyond the Standard Model

- Many good reasons to believe there is as yet unknown physics beyond the SM:
 - Dark matter + energy, matter/anti-matter asymmetry, neutrino masses/mixing +many more (see later)
- Many possible new particles/theories:
 - Supersymmetry:
 - Many flavours
 - Extra dimensions (G)
 - New gauge groups (Z', W',...)
 - New fermions (e*, t', b', ...)
 - Leptoquarks
- Can show up!
 - As subtle deviations in precision measurements
 - In direct searches for new particles

Supersymmetry (SUSY)

- SM particles have supersymmetric partners:
 - Differ by 1/2 unit in spin
 - Sfermions (squarks, selectron, smuon, ...): spin 0
 - gauginos (chargino, neutralino, gluino,...): spin 1/2
- No SUSY particles found as yet:
 - SUSY must be broken: breaking mechanism determines phenomenology
 - More than 100 parameters even in "minimal" models!

What's Nice about SUSY?

- Introduces symmetry between bosons and fermions
- Unifications of forces possible
 - SUSY changes running of couplings
- Dark matter candidate exists:
 - The lightest neutral gaugino
 - Consistent with cosmology data
- No fine-tuning required
 - Radiative corrections to Higgs acquire SUSY corrections
 - Cancellation of fermion and sfermion loops
- Also consistent with precision measurements of M_W and M_{top}
 - But may change relationship between M_W, M_{top} and M_H

From C. Quigg

SUSY Comes in Many Flavors

- Breaking mechanism determines phenomenology and search strategy at colliders
 - GMSB:
 - Gravitino is the LSP
 - Photon final states likely
 - mSUGRA
 - Neutralino is the LSP
 - Many different final states
 - Common scalar and gaugino masses
 - AMSB
 - Split-SUSY: sfermions very heavy
- R-parity
 - Conserved: Sparticles produced in pairs
 - natural dark matter candidate
 - Not conserved: Sparticles can be produced singly
 - constrained by proton decay if violation in quark sector
 - Could explain neutrino oscillations if violation in lepton sector

Mass Unification in mSUGRA

- Common masses at GUT scale: m₀ and m_{1/2}
 - Evolved via renormalization group equations to lower scales
 - Weakly coupling particles (sleptons, charginos, neutralions) are lightest

A Typical Sparticle Mass Spectrum

Sparticle Cross Sections

SUSY compared to Background

- Cross sections rather low
 - Else would have seen it already!
- Need to suppress background efficiently

Strategy for SUSY Searches

- MSSM has more than 100 parameters
 - Impossible to scan full parameter space
 - Many constraints already from
 - Precision electroweak data
 - Lepton flavour violation
 - Baryon number violation
 - ...
- Makes no sense to choose random set
 - Use simplified well motivated "benchmark" models
 - Ease comparison between experiments
- Try to make interpretation model independent
 - E.g. not as function of GUT scale SUSY particle masses but versus EWK scale SUSY particle masses
 - Limits can be useful for other models

Generic Squarks and Gluinos

- Squark and Gluino production:

- Strong interaction => large production cross section
 - for M(\tilde{g}) ≈ 300 GeV/c²:
 - 1000 event produced/ fb-1
 - for M(\tilde{g}) ≈ 500 GeV/c²:
 - 1 event produced/ fb⁻¹

Signature depends on q and g Masses

- Consider 3 cases:
 - 1. $m(\tilde{g}) < m(\tilde{q})$

 $4 \text{ jets} + E_T^{\text{miss}}$

$$2 \text{ jets} + E_T^{\text{miss}}$$

Optimize for different signatures in different scenarios

Selection and Procedure

Selection:

- Large missing E_T
 - Due to neutralinos
- Large H_T
 - $H_T = \sum E_T^{jet}$
- Large Δφ
 - Between missing E_T and jets and between jets
 - Suppress QCD dijet background due to jet mismeasurements
- Veto leptons:
 - Reject W/Z+jets, top

Procedure:

- Define signal cuts based on background and signal MC studies
- 2. Select control regions that are sensitive to individual backgrounds
- 3. Keep data "blind" in signal region until data in control regions are understood
- 4. Open the blind box!

Missing Energy

- Data spectrum contaminated by
 - Noise
 - Cosmic muons showering
 - Beam halo muons showering
- Needs "cleaning up"!
 - track matched to jet
 - electromagnetic energy fraction
 - Removal of hot cells
 - Topological cuts against beam-halo

Beam-Halo Muon Background

- Muon that comes from beam and goes through shielding
- Can cause showers in calorimeters
 - Shower usually looks not very much like physics jet
 - Often spike at certain azimuthal angles: π
 - But there is lots of those muons!
 - Can cause problem for trigger rate

QCD Dijet Rejection Cut

QCD Background at DØ

- DØ calorimeter very hermetic and compact
 - Excellent coverage and resolution
- QCD background extrapolated by exponential function
 - Only works if there are no non-Gaussian tails
 - E.g. not true in CDF
- Works in DØ!
 - This simplifies the analysis enormously if it can be done!
- Remaining backgrounds:
 - Top, W/Z+jets

W+jets, Z+jets and Top background

- Background sources:
 - W/Z+jets, top
 - Suppressed by vetoes:
 - Events with jet with EM fraction>90%
 - Rejects electrons
 - Events with isolated track
 - Rejects muons, taus and electrons
- Define control regions:
 - W/Z+jets, top
 - Make all selection cuts but invert lepton vetoes
 - Gives confidence in those background estimates
 - Modeled using Alpgen MC
 - Cross sections determined using NLO calculation

A Nice Candidate Event!

But there is no clear signal...

Cross Section Limits

- No excess in data
 - Evaluate upper limit on cross section
 - Find out where it crosses with theory
- Theory has large uncertainty: ~30%
 - Crossing point with theory lower bound ~ represents limit on squark/gluino mass

Squark and Gluino Mass Limits

- No evidence for excess of events:
 - Excluding gluino masses
 - >280 GeV independently of squark masses
 - >400 GeV for m(q
) ≈ m(g
)
- Represented in this plane:
 - Rather small model dependence as long as there is R-parity violation
- Stop and sbottom quarks are excluded/negligible in analyses:
 - They introduce model dependence and are better looked for directly

Exclusion of GUT scale parameters

- Nice interplay of hadron colliders and e⁺e⁻ colliders:
 - Similar sensitivity to same high level theory parameters via very different analyses
 - Tevatron is starting to probe beyond LEP in mSUGRA type models

Third Generation Squarks

The lightest q's:

$$m_{\tilde{t}_{1,2}}^2 = \frac{1}{2} (m_{\tilde{t}_L}^2 + m_{\tilde{t}_R}^2) \mp \frac{1}{2} \sqrt{(m_{\tilde{t}_L}^2 - m_{\tilde{t}_R}^2)^2 + 4m_t^2 (A_t - \mu \tan \beta)^2}$$

- Due to large SM top mass
- Dedicated searches for stop and sbottom:
 - $-\widetilde{t} \rightarrow c\widetilde{\chi}^0_1$ and $\widetilde{b} \rightarrow b\widetilde{\chi}^0_1$
- Signature:
 - Two heavy flavor jets +
 large missing E_T

H_T	P	# observed	#Expected
> 100	< 260	83	$81.9 \pm 4.0^{+13.9}_{-14.1}$
> 140	< 300	57	$57.1 \pm 3.1^{+8.6}_{-8.6}$
> 140	< 320	66	$64.2 \pm 3.2^{+9.0}_{-9.1}$

Stop and Sbottom Mass Exclusion

- Stop masses excluded up to 150 GeV/c²
 - If m(t)-m(χ^{0}_{1})>60 GeV/c²
- Sbottom masses excluded up to 220 GeV/c²
 - If $m(\tilde{\chi}^0_1)$ <80 GeV/c²

Higgs in the MSSM

- Minimal Supersymmetric Standard Model:
 - 2 Higgs-Fields: Parameter $\tan \beta = \langle H_u \rangle / \langle H_d \rangle$
 - 5 Higgs bosons: h, H, A, H[±]

- Pseudoscalar A
- Scalar H, h
 - Lightest Higgs (h) very similar to SM

Heavy Object could couple mostly to τ's

- Maybe the third generation is special?
 - E.g. Higgs bosons couple to mass!
 - Search for Z' or Higgs boson decaying to two τ'S
- Selection:
 - one electron or muon (" τ_e , τ_u ")
 - From leptonic tau-decay
 - one hadronic tau (" τ_h ")
 - From hadronic tau-decay
 - Both should be isolated

- Select 1- and 3-prong decays
- Efficiency: ~20-50%
- Jet fake rate: ~1-0.1%
 - 100-10 times higher than for electrons or muons!

100

CDF Run II Preliminary

150

200

Tau Signals!

- Clear peaks at 1 and 3 tracks:
 - Typical tau signature
- DØ use separate Neural Nets for the two cases:
 - Very good separation of signal and background

Acceptance for di-tau events

- Typical acceptance 1-4%
 - Factor 10 lower than for electrons and muons

Di-tau Mass reconstruction

- Neutrinos from tau-decay escape:
 - No full mass reconstruction possible
- Use "visible mass":
 - Form mass like quantity: $m_{vis}=m(\tau,e/\mu,\cancel{E_T})$
 - Good separation between signal and background
- Full mass reconstruction possible in boosted system, i.e. if p_T(τ, τ)>20 GeV:
 - Loose 90% of data statistics though!
 - Best is to use both methods in the future

MSSM Higgs Boson Search Results

High Mass Resonances

Resonances or Tails

- New resonant structure:
 - New gauge boson:
 - Z' →ee, μμ, ττ, tt
 - W' \rightarrow ev, $\mu\nu$, $\tau\nu$, tb
 - Randall-Sundrum Graviton:
 - G→ee, μμ, ττ, γγ, WW, ZZ,...
- Tail:
 - Large extra dimensions (ADD model)
 - Many many many resonances close to each other:
 - "Kaluza-Klein-Tower": ee, μμ, ττ, γγ, WW, ZZ,...
 - Contact interaction
 - Effective 4-point vertex
 - E.g. via t-channel exchange of very heavy particle
 - Like Fermi's β-decay

Dilepton Selection

- Two high momentum leptons
 - irreducible background is Drell-Yan production
 - Other backgrounds:
 - Jets faking leptons: reject by making optimal lepton ID cuts
 - WW, diphoton, etc. very small
- Have searches for
 - Dielectrons
 - Dimuons
 - Ditaus
 - Electron+muon
 - flavor changing

Dilepton Acceptance x Efficiency

Acceptance typically 20-40% for ee, μμ and eμ analyses

Neutral Spin-1 Bosons: Z'

- 2 high P_T leptons: ee, μμ or eμ
- Data look like they agree well with background
 - Let's evaluate this more closely!

How consistent are the data with the SM?

- Calculate probability of data vs SM prediction at each mass:
 - Mass window size adapted to mass resolution (~3%)
- At 330 GeV the probability is only 1%!
 - But this happens very often when scanning over a large mass range
 - 10^{-5} would correspond to 3σ evidence

Interpreting the Mass plots

- No evidence for any deviation from Standard Model => Set limits on new physics
 - Set limits on cross section x branching ratio
 - This is model independent, i.e. really what we measure
 - Any theorist can overlay their favorite 10⁻² curve
 - It remains valid independent of changes in theory
 - Always publish this!
 - can also set limits on Z' mass within certain models
 - This is model dependent
 - Nice though for comparing experiments, e.g. LEP vs Tevatron

For SM couplings:

	Z′→ee	Z'→μμ
limit	>923 GeV	>735 GeV

Conclusions: Lecture IV

- Searches for Physics Beyond the Standard Model are extremely important
 - This can revolutionize our subject and solve many (or at least a few) questions
- I showed you:
 - Squarks and Gluinos:
 - Best to optimize for physical mass regions at electroweak scale
 - High mass resonances: Z' and MSSM Higgs
- Most analyses done blindly
 - Avoid experimental bias
 - You get to have an exciting day!
 - Blind analysis does not mean "not looking at the data"
 - Look at data all the time in background dominated regions
- Not found any new physics (yet)
 - Tevatron ever improving and LHC coming soon!

Overall Conclusions

- The Tevatron physics program is very rich:
 - Probing the electroweak, the strong, the flavor sector of the Standard Model and looking for the unknown
 - Possible due to excellent detector and trigger capabilities
- The Tevatron is operating at the highest energies
 - And it is operating very well now: 3.1 fb⁻¹ delivered
 - A hadron collider environment is challenging but doable!
- There is a lot I could not show you, see also
 - http://www-cdf.fnal.gov/physics/physics.html
 - http://www-d0.fnal.gov/Run2Physics/WWW/results.html

All the best to all of us for finding (spectacular) physics beyond the Standard Model in either precision measurements or in direct searches

And so many more beautiful measurements I could not show you...!

