Standard Model Higgs

SM Higgs (I)

Production mechanisms \& cross section

SM Higgs (II)

Decays \& discovery channels

Higgs couples to m_{f}^{2}
Heaviest available fermion
(b quark) always dominates
Until WW, ZZ thresholds open
Low mass: b quarks \rightarrow jets; resolution ~ 15\%

Only chance is EM energy (use $\gamma \gamma$ decay mode)
Once $M_{H}>2 M_{Z}$, use this
W decays to jets or

lepton+neutrino ($\mathrm{E}_{\mathrm{T}}^{\text {miss }}$)

Low mass Higgs ($\mathrm{M}_{\mathrm{H}}<140 \mathrm{GeV} / \mathrm{c}^{2}$)

$H \rightarrow \gamma \gamma:$ decay is rare $\left(B \sim 10^{-3}\right)$
But with good resolution, one gets a mass peak
Motivation for $\mathrm{LAr} / \mathrm{PbWO}_{4}$ calorimeters CMS: at $100 \mathrm{GeV}, \sigma \approx 1 \mathrm{GeV}$

$$
S / B \approx 1: 20
$$

Intermediate mass Higgs

$$
H \rightarrow Z Z \rightarrow \lambda+\lambda-\lambda+\lambda^{-} \quad(\lambda=e, \mu)
$$

Very clean
Resolution: better than 1
GeV (around 100 GeV mass)
Valid for the mass range $130<\mathrm{M}_{\mathrm{H}}<500 \mathrm{GeV} / \mathrm{c}^{2}$

High mass Higgs

$H \rightarrow Z Z \rightarrow \lambda^{+} \lambda^{-}$jet jet
Need higher Branching fraction (also $v v$ for the highest masses ~ 800 $\mathrm{GeV} / \mathrm{c}^{2}$)
At the limit of statistics

Higgs discovery prospects @ LHC

The LHC can probe the entire set of "allowed" Higgs mass values;

in most cases a few months at low luminosity are adequate for a 5σ observation

Status of $\mathrm{H} \rightarrow \mathbf{b b} \quad$ (I$)$

Low mass Higgs; useful for coupling measurement $\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}}^{\text {in }} \mathrm{tt}^{-} \mathrm{H}$ production

$$
\sigma . \mathrm{Br}=300 \mathrm{fb}
$$

Backgrounds:

- Wjjjj, Wjjbb
$-t t^{-} j$
- Signal (combinatorics)

Tagging the t quarks
helps a lot

- Trigger: $t \rightarrow \mathrm{~b}(\mathrm{e} / \mu) \mathrm{v}$
- Reconstruct both t quarks

In mass region
$90 \mathrm{GeV}<\mathrm{M}(\mathrm{bb})<130 \mathrm{GeV}, \mathrm{S} / \mathrm{B}=0.3$

$\boldsymbol{t} \overline{\boldsymbol{t}} \boldsymbol{H}^{\mathbf{0}}: \boldsymbol{S}+\boldsymbol{B}(100 \mathrm{GeV})$

Status of $\mathrm{H} \rightarrow \mathbf{b b} \quad$ (II)

$\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}}$ in WH production
Big background subtraction
Mainly: Wjj, tt^{-}(smaller: tX, WZ)
Example (below) at 105:

> - in mass region $88 \mathrm{GeV}<\mathrm{M}(\mathrm{b} \overline{\mathrm{b}})<121 \mathrm{GeV}$, $\mathrm{S} / \mathrm{B}=0.03$

After bkg subtraction

SM Higgs properties (I): mass

Mass measurement
Limited by absolute energy scale
leptons \& photons: 0.1%
(with Z calibration)
Jets: 1\%
Resolutions:
For $\gamma \gamma \& 4 \lambda$ ~ $1.5 \mathrm{GeV} / \mathrm{c}^{2}$
For bb ~ $15 \mathrm{GeV} / \mathrm{c}^{2}$
At large masses: decreasing precision due to large Γ_{H} CMS ~ ATLAS

SM Higgs properties (II): width

Width; limitation:
Possible for $\mathrm{M}_{\mathrm{H}}>200$
Using golden mode (4 λ)

SM Higgs; width for $\mathbf{M}_{\mathbf{H}}<\mathbf{2} \mathbf{M}_{\mathbf{Z}}$

Basic idea: use qq \rightarrow qqH production (two forward jets+veto on central jets)

Can measure the following: $X_{j}=\Gamma_{W} \Gamma_{j} / \Gamma$ from qq $\rightarrow q q H \rightarrow q q j j$
Here: $\mathrm{j}=\gamma, \tau, \mathrm{W}\left(\mathrm{W}^{*}\right)$; precision~10-30\%
One can also measure $\mathrm{Y}_{\mathrm{j}}=\Gamma_{\mathrm{g}} \Gamma_{\mathrm{j}} / \Gamma$ from $\mathrm{gg} \rightarrow \mathrm{H} \rightarrow \mathrm{j} \mathrm{j}$
Here: $j=\gamma, W\left(W^{*}\right), Z\left(Z^{*}\right) ; ~ p r e c i s i o n ~ 10-30 \% ~$
Clearly, ratios of X_{j} and $\mathrm{Y}_{\mathrm{j}}(\sim 10-20 \%) \rightarrow$ couplings
But also interesting, if Γ_{w} is known:

$$
\begin{aligned}
& \Gamma=\left(\Gamma_{\mathrm{W}}\right)^{2} / X_{W} \\
& \text { Need to measure } H \rightarrow W^{*} \\
& \varepsilon=1-\left(B_{b}+B_{\tau}+B_{W}+B_{z}+B_{g}+B_{\gamma}\right) \ll 1 \\
& (1-\varepsilon) \Gamma_{W}=X_{\tau}(1+y)+X_{W}(1+z)+X_{\gamma}+X_{g} \\
& z=\Gamma_{W} / \Gamma_{z} ; y=\Gamma_{b} / \Gamma_{\tau}=3 \eta_{\text {QcD }}\left(m_{b} / m_{\tau}\right)^{2}
\end{aligned}
$$

SM Higgs properties (III)

Biggest uncertainty(5-10\%): Luminosity
Relative couplings statistically limited Small overlap regions

Measure	Error	M_{H} range
$(\rightarrow \gamma)$ $\left(\rightarrow{ }^{-}\right)$	30%	$80-120$
$\frac{(\rightarrow \gamma \gamma)}{\left(\rightarrow{ }^{*}\right)}$	15%	$125-155$
$\frac{\sigma(-)}{\sigma(\quad)}$	25%	$80-130$
$\left(\rightarrow{ }^{(*)}\right)$ $\left(\rightarrow{ }^{(*)}\right)$	30%	$160-180$

Strong boson-boson scattering

Example: $\mathrm{W}_{\mathrm{L}} \mathrm{Z}_{\mathrm{L}}$ scattering
W, Z polarization vector ε^{μ} satisfies: $\varepsilon^{\mu} p_{\mu}=0$;

$$
\text { for } p_{\mu}=(E, 0,0, p), \varepsilon^{\mu}=1 / M_{V}(p, 0,0, E) \approx \mathrm{P}^{\mu} / \mathrm{M}_{\mathrm{V}}+\mathrm{O}\left(\mathrm{M}_{\mathrm{V}} / \mathrm{E}\right)
$$

Scattering amplitude $\sim\left(p_{1} / M_{W}\right)\left(p_{2} / M_{z}\right)\left(p_{3} / M_{W}\right)\left(p_{4} / M_{z}\right)$, i.e. $\sigma \sim s^{2} / M_{w}{ }^{2} M_{z}{ }^{2}$

Taking $M_{H} \rightarrow \infty$ the H diagram goes to zero ($\sim 1 / M_{H}{ }^{2}$)
Technicalities: diagrams are gauge invariant, can take out one factor of s
but the second always remains (non-abelian group)
Conclusion: to preserve unitarity, one must switch on the H at some mass

Currently: $\mathrm{M}_{\mathrm{H}} \leq 700 \mathrm{GeV}$

The no Higgs case: $\mathrm{V}_{\mathrm{L}} \mathrm{V}_{\mathrm{L}}$ scattering

Biggest background is Standard Model VV scattering
Analyses are difficult and limited by statistics

Other resonances/signatures

Technicolor; many

possibilities

Example: $\rho_{T}{ }^{ \pm} \rightarrow W \pm Z^{0}$
$\rightarrow \lambda^{ \pm} \nu \lambda^{+} \lambda^{-}$(cleanest
channel...)
Many other signals (bb, t tresonances, etc...)

Wide range of observability

ATLAS; 30 fb-1

Supersymmetry

SUSY Higgses

Problems with the Higgs

Quadratic divergence of its mass

$$
\begin{gathered}
m^{2}\left(p^{2}\right)=m_{0}^{2}+\frac{r^{2}}{p}{ }^{J=1}+\bigcirc^{J=1 / 2}+\bigcirc^{J=0} \\
()=(\Lambda)+\int^{\Lambda}
\end{gathered}
$$

Λ is a cutoff momentum
Put simply: why is the Higgs mass low?

Supersymmetry (SUSY)

One possible solution:

for every particle there exists a partner particle with $1 / 2$ spin difference

Isotopic symmetry
Proton and Neutron:
different states of a
generalized particle (Nucleon)

Supersymmetry :
Fermion and Boson:
different states of a
generalized entity (Superparticle)

With SUSY, infinities disappear:

$$
\text { As long as } \mathrm{M}_{\mathrm{p}}=\mathrm{M}_{\mathrm{sp}}
$$

Supersymmetry World

SUSY doubles the particle spectrum It must also be broken

To explain why unseen till now
If broken at $\mathrm{E}_{\text {SUSY: }}$
()$=$
$(\Lambda)+\quad \int$

Supersymmetry and Unification

Couplings "run" with Q^{2} :
Loop diagrams (quantum corrections) make the coupling between the force and matter particles dependent on the energy at which the interaction occurs

Extrapolating the couplings for the EM, WK and strong interactions:

MSSM Higgses: phenomenology

Complex analysis; 5 Higgses ($\mathrm{H}^{ \pm} ; \mathrm{H}^{0}, \mathrm{~h}^{0}, \mathrm{~A}^{0}$)
At tree level, all masses \& couplings depend on only two parameters; tradition says take $M_{A} \& \tan \beta$
Modifications to tree-level mainly from top loops
Important ones; e.g. at tree-level, $\mathrm{M}_{\mathrm{h}}<\mathrm{M}_{\mathrm{z}} \cos \beta$; radiative corrections push this to 150 GeV .
Important branch 1: SUSY particle masses
(a) $\mathrm{M}>1 \mathrm{TeV}$ (i.e. no decays of the Higgses to them); wellstudied
(b) $\mathrm{M}<1 \mathrm{TeV}$ (i.e. allows decays of the Higgses to them); "new"
Important branch 2: stop mixing; value of $\tan \beta$
(a) Maximal-No mixing
(b) Low (1.5) and high (30) values of $\tan \beta$

MSSM Higgses: masses

Mass spectra for $\mathrm{M}_{\text {susy }}>1 \mathrm{TeV}$

MSSM: h/H production

Biggest branch is $\tan \beta$

MSSM: h/A decay

h is light
Decays to $\mathrm{b} \mathrm{\bar{b}}(90 \%)$ \& $\tau \tau(8 \%)$
Decays to cc, gg suppressed

H/A "heavy"

Decays to top open (low $\tan \beta$) Otherwise still to $\mathrm{b} \overline{\mathrm{b}}$ \& $\tau \tau$ Negative: WW/ZZ channels suppressed; lose golden modes for H

Higgs channels considered

Channels currently being investigated:

$$
\begin{aligned}
& \mathrm{H}, \mathrm{~h} \rightarrow \gamma, \mathrm{~b} \overline{\mathrm{~b}}\left(\mathrm{H} \rightarrow \mathrm{~b} \bar{b}^{-} \text {in WH, } \mathrm{tt}^{-} \mathrm{H}\right) \\
& h \rightarrow \gamma \gamma \text { in } W H, t^{-} h \rightarrow I \gamma \gamma \\
& \text { h, } \mathrm{H} \rightarrow \mathrm{ZZ}^{*}, \mathbf{Z Z} \rightarrow 4 \text { I } \\
& \mathrm{h}, \mathrm{H}, \mathrm{~A} \rightarrow \tau^{+} \tau^{-} \rightarrow(\mathrm{e} / \mu)^{+}+\mathrm{h}^{-}+\mathrm{E}_{\mathrm{T}} \text { miss } \\
& \rightarrow \mathrm{e}^{+}+\mu^{-}+\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}} \\
& \rightarrow \mathrm{~h}^{+}+\mathrm{h}^{-}+\mathrm{E}_{\mathrm{T}}^{\text {miss }} \\
& \mathrm{H}^{+} \rightarrow \tau^{+} v \text { from } \mathrm{t} \mathrm{t}^{-} \\
& \mathrm{H}^{+} \rightarrow \tau^{+} v \text { and } \mathrm{H}^{+} \rightarrow t \overline{\mathrm{~b}} \text { for } \mathrm{M}_{\mathrm{H}}>\mathrm{M}_{\text {top }} \\
& \mathrm{A} \rightarrow \text { Zh with } \mathrm{h} \rightarrow \mathrm{~b} \overline{\mathrm{~B}} ; \mathrm{A} \rightarrow \gamma \\
& \mathrm{H}, \mathrm{~A} \rightarrow \chi_{2}^{0} \chi_{2,}^{0} \chi_{i}^{0} \chi_{\mathrm{j}}^{0}, \chi_{\mathrm{i}}^{\dagger} \chi_{\widetilde{\mathrm{j}}}^{\sim} \\
& \mathrm{H}^{+} \rightarrow \chi_{2}^{\star} \chi^{0}{ }_{2} \\
& \mathrm{qq} \rightarrow \mathrm{qqH} \text { with } \mathrm{H} \rightarrow \tau^{+} \tau^{-} \\
& \mathrm{H} \rightarrow \tau \tau \text {, in } \mathrm{WH}, \mathrm{t} \mathrm{t}^{-} \mathrm{H} \\
& \text { new and promising } \\
& \text { using OO code (tough...) } \\
& \text { work started; tough... }
\end{aligned}
$$

MSSM Higgses: last (published) results

Little room for h left; A is still "open"

- Maximal mixing:

- $\mathrm{M}_{\mathrm{h}}>84 \mathrm{GeV} / \mathrm{c}^{2}$
- exclude
$0.8<\tan \beta<1.9$
- No mixing:
- $\mathrm{M}_{\mathrm{h}}>84 \mathrm{GeV} / \mathrm{c}^{2}$ (95\%CL)
- exclude
$0.5<\tan \beta<3.2$

MSSM Higgses: expected LEP reach

Taking 208 GeV and actual luminosity recorded

$\mathbf{H}, \mathbf{A} \rightarrow \tau \tau$

Most promising modes for H, A

 τ 's identified either in hadronic or leptonic decaysMass reconstruction: take lepton/jet direction to be the τ direction

H, A reach via τ decays

Contours are $5 \sigma ; \mathrm{M}_{\mathrm{SUSY}}=1 \mathrm{TeV}$

H^{+}detection

Associated top- H^{+}production:
Use all-hadronic decays of the top (leave one "neutrino")
H decay looks like W decay \rightarrow Jacobian peak for τ-missing E_{T} In the process of creating full trigger path + ORCA analysis
$\mathrm{E}_{\mathrm{T}}(\mathrm{jet})>40$
$|\eta|<2.4$
Veto on extra jet, and on second top

Bkg: $\mathrm{t}^{-} \mathrm{H}$
a) $\mathrm{gg} \rightarrow \mathrm{H}^{+} \mathrm{tb}, \mathrm{H}^{+} \rightarrow \tau \mathrm{v}, \mathrm{t} \rightarrow \mathrm{qqb}$

SUSY reach on $\tan \beta-\mathrm{M}_{\mathrm{A}}$ plane

Adding $\mathrm{b} \overline{\mathrm{b}}$ on the τ modes can "close" the plane

MSSM Higgs reach; $\mathbf{M}_{\text {Susy }} \sim 1 \mathrm{TeV}$

Summary:

$$
\begin{aligned}
& \rightarrow \gamma \gamma \quad-\{\quad, \\
& \rightarrow \quad{ }^{(*)} \rightarrow 1 \\
& \rightarrow \tau \tau \rightarrow(1 / \quad)+\quad \text { miss }
\end{aligned}
$$

, , $\rightarrow \mu \mu$; same for $b \bar{b} H_{\text {SUSY }}$
$H^{ \pm} \rightarrow \tau^{ \pm} v\left\{\begin{array}{l}\text { from } t \rightarrow H b \\ \text { from } H \rightarrow t b\end{array}\right.$
$A \rightarrow \gamma$
$A \rightarrow Z h$
$H \rightarrow h h$
$A / H \rightarrow t \bar{t}$

Observability of MSSM Higgses

If SUSY charg(neutral)inos < 1 TeV (I)

Decays $\mathrm{H}^{0} \rightarrow \chi^{\alpha} \chi_{2}^{\alpha}$, $\chi^{ \pm} \chi_{-}^{-}$-become important
Recall that $\chi_{2}^{0} \rightarrow \chi_{1}^{0} 1+1^{-}$has spectacular edge on the dilepton mass distribution

Example: $\chi^{0}{ }_{2}^{2} \chi_{2}^{0}$. Four (!) lepto ${ }^{\left(禸^{\circ}\right.}$ (isolated); plus two edges

Four-lepton mass

Central point in MSSM parameter space :

$$
\begin{array}{ll}
\mathrm{M}_{A, H}=350 \mathrm{GeV} & \tan \beta=5 \\
\mathrm{M}_{\tilde{l}}=250 \mathrm{GeV} & \mu=-500 \mathrm{GeV} \\
\mathrm{M}_{\tilde{\chi}}^{0}=60 \mathrm{GeV} & \mathrm{M}_{\tilde{\chi}_{0}^{0}}=110 \mathrm{GeV} \\
\mathrm{M}_{\tilde{q}}=\mathrm{M}_{\tilde{g}}=1 \mathrm{TeV} &
\end{array}
$$

If SUSY charg(neutral)inos < 1 TeV (II)

Adding bb on the τ modes can "close" the plane

MSSM: Higgs summary

At least one ϕ will be found in the entire $\mathrm{M}_{\mathrm{A}}-\tan \beta$ plane latter (almost) entirely covered by the various signatures, however:
Full exploration requires $100 \mathrm{fb}^{-1}$
Difficult region: $3<\tan \beta<10$ and $120<M_{A}<220$; will need:
$>100 \mathrm{fb}^{-1}$ or $\mathrm{h} \rightarrow \mathrm{bb}$ decays
Further improvements on tidentification?
Intermediate tan β region: difficult to disentangle SM and MSSM Higgses (only h is detectable)

Sumersymmetry

Sparticles

SUSY @ LHC

Simplest SUSY

Ample cross section for direct squark and gluino production

$M_{\text {so }}(\mathrm{GeV})$	$\sigma(p b)$	Evts $/ \mathrm{yr}$
500	100	$10^{6}-10^{7}$
$\mathbf{1 0 0 0}$	1	$10^{4}-10^{5}$
$\mathbf{2 0 0 0}$	0.01	$10^{2}-10^{3}$

Gauginos produced in their decay; example: $q_{L} \rightarrow \chi_{2}{ }^{0} q_{L}$

SUSY mass scale

Events with $\geq 4 j e t s+E_{T}$ miss
Clean: $S / B \sim 10$ at high $M_{\text {eff }}$
Establish SUSY scale ($\sigma \approx 20 \%$)

$$
M_{\mathrm{eff}}=\sum_{j=1}^{4} P_{\mathrm{T}, j}+E_{\mathrm{T}}^{\mathrm{miss}}
$$

Effective mass "tracks" SUSY scale well

SUSY decays

Squarks \& gluinos produced together with high σ Gauginos produced in their decays; examples:

$$
\begin{aligned}
& \tilde{q}_{L} \rightarrow \tilde{x}_{2}{ }^{0} q_{L} \text { (SUGRA P5) } \\
& a \rightarrow \tilde{g} q \rightarrow \tilde{x}_{2}{ }^{0} q \bar{q} \text { (GMSB G1a) }
\end{aligned}
$$

Two "generic" options with χ^{0} :
(1) $\chi_{2}{ }^{0} \rightarrow \chi_{1}{ }^{0} h(\sim$ dominates if allowed)
(2) $\chi_{2}{ }^{0} \rightarrow \chi_{1}{ }^{0} \lambda+\lambda-$ or $\chi_{2}{ }^{0} \rightarrow \lambda+\lambda-$

Charginos more difficult
Decay has v or light q jet
Options:
Look for higgs (to b̄̄)
Isolated (multi)-leptons

SUSY

Huge number of theoretical models

Very complex analysis; MSSM-124
Very hard work to study particular scenario
assuming it is available in an event generator
To reduce complexity we have to choose some "reasonable", "typical" models; use a theory of dynamical SYSY breaking mSUGRA
GMSB
AMSB (in less detail)
Model determines full phenomenology (masses, decays, signals)

SUGRA

Five parameters
All scalar masses same $\left(m_{0}\right)$ at GUT scale
All gaugino masses same ($\mathrm{m}_{1 / 2}$) at GUT scale $\tan \beta$ and $\operatorname{sign}(\mu)$
All tri-linear Higgs-sfermion-sfermion couplings common value A_{0} (at GUT scale)
Full "particle table" predictable
26 RGE's solved iteratively
Branches: R parity (non)conservation
Extensions: relax GUT assumptions (add parameters)

mSUGRA

Simplest SUSY

Ample cross section for squark and gluino production Gauginos produced in their decay; example: $\tilde{\mathrm{q}}_{\mathrm{L}} \rightarrow \tilde{\chi}_{2}{ }^{0} \mathrm{q}_{\mathrm{L}}$

SUGRA spectroscopy

Basic assumption: mass universality
Scalar masses: m_{0};
gaugino masses: $m_{1 / 2}$;
Higgs masses: $\left(m_{0}^{2}+\mu^{2}\right)^{1 / 2}$
RGE: run masses down to EWK scale

M(squark): large
Increase (due to α_{3})
M(slepton): small increase
 (due to α_{1}, α_{2})

Gauginos: gluino is fast-rising; B-ino, W-ino mass decreases
Mixing leads to charginos (2) and neutralinos (4)
Higgs: strong top coupling drives $\mu^{2}<0$; Symmetry Breaking mechanism arises naturally in mSUGRA(!)

Sparticles in SUGRA

Contours of fixed \tilde{g} / \tilde{q} and $\tilde{\chi} / \tilde{\lambda}$ mass

SUGRA: the five LHC points

Defined by LHCC in 1996

Points 1,3,5: light Higgses
LEP-excluded (3; less for 1,5)
Restore with larger tan β
Points 1\&2:
Squark/gluinos ~ 1 TeV
Point 4: at limit of SB
Small μ^{2}, large χ, ϕ mixing
Heavy squarks
Point 5: cosmology-motivated

P	M_{0}	$M_{1 / 2}$	A_{0}	$\tan \beta$	$s(\mu)$
1	400	400	0	2	+
2	400	400	0	10	+
3	200	100	0	2	-
4	800	200	0	10	+
5	100	300	300	2.1	+

Small $\mathrm{m}_{0} \rightarrow$ light sleptons
\rightarrow increase annihilation of $\chi_{1}{ }^{0}$
\rightarrow reduce CDM

Sparticles (e.g. SUGRA)

Formidable number of options
Five parameters
All scalar masses same $\left(m_{0}\right)$ at GUT scale All gaugino masses same ($m_{1 / 2}$) at GUT scale $\tan \beta$ and $\operatorname{sign}(\mu)$
All tri-linear Higgs-sfermion-sfermion couplings common value A_{0} (at GUT scale)
Full "particle table" predictable
26 RGE's solved iteratively
Branches: R parity (non)conservation
Extensions: relax GUT assumptions (add parameters)

Experimentally: spectacular signatures

"Prototype": $\tilde{\chi}_{2}{ }^{0} \rightarrow \tilde{\chi}_{1}{ }^{0} \lambda+\lambda-$
Straightforward:
dileptons $+E_{T}$ miss
Example from P3
SM even smaller with b's
Also works at other points
But additional SM (e.g. Zº $\Delta \mathrm{M}$ measurement easy

Position of edge; accurate

Dileptons @ other points

Multi-observations

Main peak from $\tilde{\chi}_{2}{ }^{0} \rightarrow \tilde{\chi}_{1}{ }^{0} \lambda^{+} \lambda^{-}$
Measure $\Delta \mathrm{m}$ as before
Also peak from Z^{0} through

$$
\tilde{\chi}_{2}{ }^{0} \rightarrow \tilde{\chi}_{1}{ }^{0} Z^{0}
$$

Due to heavier gauginos P4 at "edge" of SB
\rightarrow small $\mu^{2} \rightarrow$
(a) $\chi^{ \pm}$and $\tilde{\chi}^{0}$ are light
(b) strong mixing between gauginos and Higgsinos

At P4 large Branching fractions to Z decays:
e.g. $\mathrm{B}\left(\tilde{\chi}_{3} \rightarrow \tilde{\chi}_{1.2} Z^{0}\right)^{\sim} 1 / 3$; size of peak $/ P_{T}(Z) \rightarrow$ info on masses and mixing of heavier gauginos (model-dependent)

Determining SUSY parameters

From the edges of the spectra @ P5: $\tilde{q}_{L} \rightarrow q \tilde{x}_{2}^{0} \rightarrow q \tilde{\lambda} \lambda \rightarrow q \lambda^{+} \lambda^{-}$ ATLAS example:

2 isol, OS leptons+=4jets $+\mathrm{E}_{\mathrm{T}}$ miss
Combine leptons with 2 harder jets

$$
M_{\lambda q_{q}}^{\max }=\left[\frac{\left(M_{\tilde{q}_{L}}^{2}-M_{\chi_{2}^{0}}^{2}\right)\left(M_{\chi_{2}^{0}}^{2}-M_{\chi_{1}^{0}}^{2}\right.}{M_{\chi_{2}^{0}}^{2}}\right]^{1 / 2} \approx 550
$$

Similarly, minimum at $270 \mathrm{GeV} / \mathrm{c}^{2}$
Both min \& max visible
Example shown: e μ subtracted

Distinguishing 2 \& 3-body decays

Two scenarios can be disentangled directly

From asymmetry of two leptons:

$$
A=\frac{P_{\mathrm{T}}^{\max }-P_{\mathrm{T}}^{\min }}{P_{\mathrm{T}}^{\max }+P_{\mathrm{T}}^{\min }}
$$

In analogy with τ decays

SUGRA reach

Example from Point 1

$\tan \beta=2 ; \mathrm{A}_{0}=0 ; \operatorname{sign}(\mu)=-$
But look at entire $\mathrm{m}_{0}-\mathrm{m}_{1 / 2}$ plane
Example signature:
N (isolated) leptons +
$=2$ jets $+E_{T}$ miss
5σ ($\sigma=$ significance)
contours
Essentially reach is ~2 (1) $\mathrm{TeV} / \mathrm{c}^{2}$ for the m_{0} $\left(\mathrm{m}_{1 / 2}\right)$ plane

The other scenario: $\chi_{2}{ }^{0} \rightarrow \chi_{1}{ }^{0} h$

Followed by $h \rightarrow b \bar{b}$: h discovery at LHC
E.g. at Point 1, $\approx 20 \%$ of SUSY events have $h \rightarrow b \bar{b}$

But squarks/gluinos heavy (low cross sections) b-jets are hard and central

Expect large peak in (btagged) di-jet mass distribution
Resolution driven by jet energy measurement Largest background is other SUSY events!

Building on the \mathbf{h}

In analogy with adding jets to $\chi_{2}{ }^{0} \rightarrow \chi_{1}{ }^{0} \lambda^{+} \lambda^{-}$ Select mass window (e.g. 50 GeV) around h Combine with two highest E_{T} jets; plot shows min. mass Again, use kinematic limits

Case shown: max ~ $550 \mathrm{GeV} / \mathrm{c}^{2}$ Beyond this:

Model dependence

Observability of decays into h

Examples from CMS $(\tan \beta=2 \& 10)$

Varying $\tan \beta$

τ modes eventually become important

At $\tan \beta \gg 1$ only
2-body $\tilde{\chi}_{2}{ }^{0}$ decays (may be): $\tilde{\chi}_{2}{ }^{0} \rightarrow \tilde{\tau}_{1} \tau \rightarrow \tau \tau \tilde{\chi}_{1}{ }^{0}$
Visible e μ excess over SM; for dilepton edge: need $\tau \tau$ mass

SUSY parameters; SUGRA

Point/Lumi	$m_{0}(\mathrm{GeV})$	$m_{1 / 2}(\mathrm{TeV})$	$\tan \beta$	$s(\mu)$
P1 @100fb-1	400 ± 100	400 ± 8	2.00 ± 0.08	ok
P2 @100fb-1	400 ± 100	400 ± 8	10 ± 2	ok
P4 @100fb-1	800 ± 50	200 ± 2	10 ± 2	ok
P5 @10fb-1	100 ± 4	300 ± 3	± 0.1	ok

Essentially no information on A_{0}
($A_{\text {heavy }}$ evolve to fixed point independent A_{0})

